mirror of
https://github.com/kalmarek/SmallHyperbolic
synced 2024-11-09 04:05:27 +01:00
formatting
This commit is contained in:
parent
c2740d58d3
commit
725293a037
@ -18,8 +18,8 @@ const CC = AcbField(256)
|
||||
|
||||
SL2p = let
|
||||
if p == 109
|
||||
a,b = let
|
||||
a = SL₂{p}([ 0 1; 108 11])
|
||||
a, b = let
|
||||
a = SL₂{p}([0 1; 108 11])
|
||||
b = SL₂{p}([57 2; 52 42])
|
||||
@assert isone(a^10)
|
||||
@assert isone(b^10)
|
||||
@ -27,7 +27,7 @@ SL2p = let
|
||||
a, b
|
||||
end
|
||||
elseif p == 131
|
||||
a,b = let
|
||||
a, b = let
|
||||
a = SL₂{p}([-58 -24; -58 46])
|
||||
b = SL₂{p}([0 -3; 44 -12])
|
||||
@assert isone(a^10)
|
||||
@ -37,14 +37,15 @@ SL2p = let
|
||||
end
|
||||
else
|
||||
@warn "no special set of generators for prime $p"
|
||||
a,b = let
|
||||
a, b = let
|
||||
a = SL₂{p}(1, 0, 1, 1)
|
||||
b = SL₂{p}(1, 1, 0, 1)
|
||||
a, b
|
||||
end
|
||||
end
|
||||
|
||||
E, sizes = RamanujanGraphs.generate_balls([a,b, inv(a), inv(b)], radius=21);
|
||||
E, sizes =
|
||||
RamanujanGraphs.generate_balls([a, b, inv(a), inv(b)], radius = 21)
|
||||
@assert sizes[end] == RamanujanGraphs.order(SL₂{p})
|
||||
E
|
||||
end
|
||||
@ -115,21 +116,40 @@ let α = RamanujanGraphs.generator(RamanujanGraphs.GF{p}(0)),
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
#
|
||||
# using RamanujanGraphs.LightGraphs
|
||||
# using Arpack
|
||||
#
|
||||
# Γ, eigenvalues = let q = 109
|
||||
# a = RamanujanGraphs.PSL₂{q}([ 0 1
|
||||
# 108 11])
|
||||
# b = RamanujanGraphs.PSL₂{q}([57 2
|
||||
# 52 42])
|
||||
# Γ, eigenvalues = let p = 109,
|
||||
# a = PSL₂{p}([ 0 1; 108 11]),
|
||||
# b = PSL₂{p}([ 57 2; 52 42])
|
||||
#
|
||||
# S = unique([[a^i for i in 1:4]; [b^i for i in 1:4]])
|
||||
#
|
||||
# @info "Generating set S of $(eltype(S))" S
|
||||
# @time Γ, verts, vlabels, elabels = RamanujanGraphs.cayley_graph((q^3 - q)÷2, S)
|
||||
# @time Γ, verts, vlabels, elabels =
|
||||
# RamanujanGraphs.cayley_graph(RamanujanGraphs.order(PSL₂{p}), S)
|
||||
#
|
||||
# @assert all(LightGraphs.degree(Γ,i) == length(S) for i in vertices(Γ))
|
||||
# @assert LightGraphs.nv(Γ) == RamanujanGraphs.order(PSL₂{p})
|
||||
# A = adjacency_matrix(Γ)
|
||||
# @time eigenvalues, _ = eigs(A, nev=5)
|
||||
# @show Γ eigenvalues
|
||||
# Γ, eigenvalues
|
||||
# end
|
||||
#
|
||||
# let p = 131,
|
||||
# a = PSL₂{p}([-58 -24; -58 46]),
|
||||
# b = PSL₂{p}([0 -3; 44 -12])
|
||||
#
|
||||
# S = unique([[a^i for i in 1:4]; [b^i for i in 1:4]])
|
||||
#
|
||||
# @info "Generating set S of $(eltype(S))" S
|
||||
# @time Γ, verts, vlabels, elabels =
|
||||
# RamanujanGraphs.cayley_graph(RamanujanGraphs.order(PSL₂{p}), S)
|
||||
#
|
||||
# @assert all(LightGraphs.degree(Γ,i) == length(S) for i in vertices(Γ))
|
||||
# @assert LightGraphs.nv(Γ) == RamanujanGraphs.order(PSL₂{p})
|
||||
# A = adjacency_matrix(Γ)
|
||||
# @time eigenvalues, _ = eigs(A, nev=5)
|
||||
# @show Γ eigenvalues
|
||||
|
Loading…
Reference in New Issue
Block a user