mirror of
https://github.com/kalmarek/SmallHyperbolic
synced 2024-11-27 16:35:26 +01:00
fix discrete reps enumeration for p = 3 (mod 4)
This commit is contained in:
parent
62c8a09cc9
commit
c2740d58d3
@ -8,7 +8,6 @@ const p = try
|
||||
@assert length(ARGS) == 2 && ARGS[1] == "-p"
|
||||
p = parse(Int, ARGS[2])
|
||||
RamanujanGraphs.Primes.isprime(p)
|
||||
# @assert p % 4 == 1
|
||||
p
|
||||
catch ex
|
||||
@error "You need to provide a prime `-p` which is congruent to 1 mod 4."
|
||||
@ -82,25 +81,35 @@ end
|
||||
|
||||
let α = RamanujanGraphs.generator(RamanujanGraphs.GF{p}(0)),
|
||||
β = RamanujanGraphs.generator_min(QuadraticExt(α))
|
||||
for j = 1:(p-1)÷4
|
||||
|
||||
if p % 4 == 1
|
||||
ub = (p - 1) ÷ 4
|
||||
ζ = root_of_unity(CC, (p + 1) ÷ 2, (p - 1) ÷ 4)
|
||||
else # p % 4 == 3
|
||||
ub = (p + 1) ÷ 4
|
||||
ζ = root_of_unity(CC, (p + 1), 1)
|
||||
end
|
||||
|
||||
for k = 1:ub
|
||||
try
|
||||
h = DiscreteRepr(
|
||||
RamanujanGraphs.GF{p}(1) => root_of_unity(CC, p),
|
||||
β => root_of_unity(CC, (p+1)÷2, j*(p-1)÷4))
|
||||
β => ζ^k,
|
||||
)
|
||||
|
||||
@time adjacency = let
|
||||
A = matrix(CC, h(SL2p[2]))
|
||||
B = matrix(CC, h(SL2p[3]))
|
||||
sum(A^i for i in 1:4) + sum(B^i for i in 1:4)
|
||||
sum(A^i for i = 1:4) + sum(B^i for i = 1:4)
|
||||
end
|
||||
|
||||
@time ev = let evs = safe_eigvals(adjacency)
|
||||
_count_multiplicites(evs)
|
||||
end
|
||||
|
||||
@info "Discrete Series Representation $j" ev[1:2] ev[end]
|
||||
@info "Discrete Series Representation $k" ev[1:2] ev[end]
|
||||
catch ex
|
||||
@error "Discrete Series Representation $j : failed" ex
|
||||
@error "Discrete Series Representation $k : failed" ex
|
||||
ex isa InterruptException && rethrow(ex)
|
||||
end
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user