mirror of
https://github.com/kalmarek/SmallHyperbolic
synced 2025-01-12 22:37:33 +01:00
compute eigenvalues of representations of PSL(2,109) (PEC supplied)
This commit is contained in:
parent
4f1995c1b9
commit
ed6a987f70
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
log
|
||||||
|
data/*rep*
|
@ -299,11 +299,17 @@ git-tree-sha1 = "928b8ca9b2791081dc71a51c55347c27c618760f"
|
|||||||
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
|
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
|
||||||
version = "0.3.3"
|
version = "0.3.3"
|
||||||
|
|
||||||
|
[[Nemo]]
|
||||||
|
deps = ["AbstractAlgebra", "BinaryProvider", "InteractiveUtils", "Libdl", "LinearAlgebra", "Markdown", "Random", "Test"]
|
||||||
|
git-tree-sha1 = "0db7e2b72bd67770d61ae2af18376a78d817816c"
|
||||||
|
uuid = "2edaba10-b0f1-5616-af89-8c11ac63239a"
|
||||||
|
version = "0.15.1"
|
||||||
|
|
||||||
[[OpenBLAS_jll]]
|
[[OpenBLAS_jll]]
|
||||||
deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"]
|
deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"]
|
||||||
git-tree-sha1 = "2ee3e636e94b9fd95fa8364d5cba2e20dae16609"
|
git-tree-sha1 = "1887096f6897306a4662f7c5af936da7d5d1a062"
|
||||||
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
|
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
|
||||||
version = "0.3.9+2"
|
version = "0.3.9+4"
|
||||||
|
|
||||||
[[OpenSpecFun_jll]]
|
[[OpenSpecFun_jll]]
|
||||||
deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"]
|
deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"]
|
||||||
|
80
PSL.jl
Normal file
80
PSL.jl
Normal file
@ -0,0 +1,80 @@
|
|||||||
|
using Nemo
|
||||||
|
using DelimitedFiles
|
||||||
|
|
||||||
|
include("src/nemo_utils.jl")
|
||||||
|
|
||||||
|
function parse_evalZ(arg, expr_str)
|
||||||
|
ex = Meta.parse(expr_str)
|
||||||
|
return @eval begin
|
||||||
|
let Z=$arg
|
||||||
|
$ex
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function parse_evalzz(arg, expr_str)
|
||||||
|
ex = Meta.parse(expr_str)
|
||||||
|
return @eval begin
|
||||||
|
let zz=$arg
|
||||||
|
$ex
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function load_discrete_repr(i, q=109; CC=AcbField(128))
|
||||||
|
ζ = root_of_unity(CC, (q+1)÷2)
|
||||||
|
degree = q-1
|
||||||
|
|
||||||
|
ra = readdlm("data/Discrete reps PSL(2, $q)/discrete_rep_$(i)_a.txt", ',', String)
|
||||||
|
a = matrix(CC, [CC(parse_evalZ(ζ, s)) for s in ra[1:degree, 1:degree]])
|
||||||
|
|
||||||
|
rb = readdlm("data/Discrete reps PSL(2, $q)/discrete_rep_$(i)_b.txt", ',', String)
|
||||||
|
b = matrix(CC, [CC(parse_evalZ(ζ, s)) for s in rb[1:degree, 1:degree]])
|
||||||
|
|
||||||
|
return a,b
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
function load_principal_repr(i, q=109; CC=AcbField(128))
|
||||||
|
ζ = root_of_unity(CC, (q+1)÷2)
|
||||||
|
degree = q+1
|
||||||
|
|
||||||
|
ra = readdlm("data/Principal reps PSL(2, $q)/principal_rep_$(i)_a.txt", ',', String)
|
||||||
|
a = matrix(CC, [CC(parse_evalzz(ζ, s)) for s in ra[1:degree, 1:degree]])
|
||||||
|
|
||||||
|
rb = readdlm("data/Principal reps PSL(2, $q)/principal_rep_$(i)_b.txt", ',', String)
|
||||||
|
b = matrix(CC, [CC(parse_evalzz(ζ, s)) for s in rb[1:degree, 1:degree]])
|
||||||
|
|
||||||
|
return a,b
|
||||||
|
end
|
||||||
|
|
||||||
|
# for i in 0:27
|
||||||
|
# try
|
||||||
|
# a,b = load_principal_repr(i)
|
||||||
|
# adjacency = sum([[a^i for i in 1:4]; [b^i for i in 1:4]])
|
||||||
|
# M = parent(adjacency)
|
||||||
|
#
|
||||||
|
# # X = M(rand(base_ring, size(adjacency)))
|
||||||
|
#
|
||||||
|
# # @time ev = eigvals(X*adjacency*inv(X))
|
||||||
|
# @time evc = eigvals(adjacency)
|
||||||
|
# ev = sort(real.(first.(evc)), lt=<, rev=true)
|
||||||
|
# @info "Principal Series Representation $i" ev[1:4]
|
||||||
|
# catch ex
|
||||||
|
# @error "Principal Series Representation $i : failed"
|
||||||
|
# ex isa InterruptException && throw(ex)
|
||||||
|
# end
|
||||||
|
# end
|
||||||
|
|
||||||
|
for i in 1:27
|
||||||
|
try
|
||||||
|
a,b = load_discrete_repr(i)
|
||||||
|
adjacency = sum([[a^i for i in 1:4]; [b^i for i in 1:4]])
|
||||||
|
@time evc = eigvals(adjacency)
|
||||||
|
ev = sort(real.(first.(evc)), lt=<, rev=true)
|
||||||
|
@info "Discrete Series Representation $i" ev[1:4]
|
||||||
|
catch ex
|
||||||
|
@error "Discrete Series Representation $i : failed"
|
||||||
|
ex isa InterruptException && rethrow(ex)
|
||||||
|
end
|
||||||
|
end
|
@ -5,6 +5,7 @@ DelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab"
|
|||||||
GroupRings = "0befed6a-bd73-11e8-1e41-a1190947c2f5"
|
GroupRings = "0befed6a-bd73-11e8-1e41-a1190947c2f5"
|
||||||
Groups = "5d8bd718-bd84-11e8-3b40-ad14f4a32557"
|
Groups = "5d8bd718-bd84-11e8-3b40-ad14f4a32557"
|
||||||
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
|
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
|
||||||
|
Nemo = "2edaba10-b0f1-5616-af89-8c11ac63239a"
|
||||||
PropertyT = "03b72c93-0167-51e2-8a1e-eb4ff1fb940d"
|
PropertyT = "03b72c93-0167-51e2-8a1e-eb4ff1fb940d"
|
||||||
RamanujanGraphs = "e7bd6bc6-b6b8-11e9-1ec2-2f89442c0d6c"
|
RamanujanGraphs = "e7bd6bc6-b6b8-11e9-1ec2-2f89442c0d6c"
|
||||||
SCS = "c946c3f1-0d1f-5ce8-9dea-7daa1f7e2d13"
|
SCS = "c946c3f1-0d1f-5ce8-9dea-7daa1f7e2d13"
|
||||||
|
19
src/PSL.jl
19
src/PSL.jl
@ -1,19 +0,0 @@
|
|||||||
using RamanujanGraphs
|
|
||||||
using RamanujanGraphs.LightGraphs
|
|
||||||
using Arpack
|
|
||||||
|
|
||||||
Γ, eigenvalues = let q = 109
|
|
||||||
a = RamanujanGraphs.PSL₂{q}([ 0 1
|
|
||||||
108 11])
|
|
||||||
b = RamanujanGraphs.PSL₂{q}([57 2
|
|
||||||
52 42])
|
|
||||||
|
|
||||||
S = unique([[a^i for i in 1:4]; [b^i for i in 1:4]])
|
|
||||||
|
|
||||||
@info "Generating set S of $(eltype(S))" S
|
|
||||||
@time Γ, verts, vlabels, elabels = RamanujanGraphs.cayley_graph((q^3 - q)÷2, S)
|
|
||||||
@assert all(degree(Γ,i) == length(S) for i in vertices(Γ))
|
|
||||||
A = adjacency_matrix(Γ)
|
|
||||||
@time eigenvalues, _ = eigs(A, nev=5)
|
|
||||||
@show Γ eigenvalues
|
|
||||||
end
|
|
22
src/nemo_utils.jl
Normal file
22
src/nemo_utils.jl
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
import Base.reim
|
||||||
|
reim(x::Nemo.acb) = reim(convert(ComplexF64, x))
|
||||||
|
|
||||||
|
function root_of_unity(CC::AcbField, p, k=1)
|
||||||
|
@assert p > 0
|
||||||
|
res = zero(CC)
|
||||||
|
ccall((:acb_unit_root, Nemo.libarb), Cvoid, (Ref{acb}, Culong, Clong), res, p, prec(CC))
|
||||||
|
return res^k
|
||||||
|
end
|
||||||
|
|
||||||
|
import Base.adjoint
|
||||||
|
function Base.adjoint(m::acb_mat)
|
||||||
|
res = zero(m)
|
||||||
|
ccall((:acb_mat_conjugate_transpose, Nemo.libarb),
|
||||||
|
Cvoid, (Ref{acb_mat}, Ref{acb_mat}), res, m)
|
||||||
|
return res
|
||||||
|
end
|
||||||
|
|
||||||
|
using Random
|
||||||
|
import Base.rand
|
||||||
|
|
||||||
|
rand(rng::AbstractRNG, rs::Random.SamplerTrivial{AcbField}) = (CC = rs[]; CC(rand(Float64), rand(Float64)))
|
Loading…
Reference in New Issue
Block a user