1
0
mirror of https://github.com/kalmarek/SmallHyperbolic synced 2024-11-09 04:05:27 +01:00
SmallHyperbolic/adj_psl2_eigvals.jl

128 lines
3.5 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using RamanujanGraphs
using LinearAlgebra
using Nemo
include("src/nemo_utils.jl")
const p = try
@assert length(ARGS) == 2 && ARGS[1] == "-p"
p = parse(Int, ARGS[2])
RamanujanGraphs.Primes.isprime(p)
@assert p % 4 == 1
catch ex
@error "You need to provide a prime `-p` which is congruent to 1 mod 4."
rethrow(ex)
end
const CC = AcbField(256)
SL2p = let
if p == 109
a,b = let
a = SL₂{p}([ 0 1; 108 11])
b = SL₂{p}([57 2; 52 42])
@assert isone(a^10)
@assert isone(b^10)
a, b
end
elseif p == 131
a,b = let
a = SL₂{p}([-58 -24; -58 46])
b = SL₂{p}([0 -3; 44 -12])
@assert isone(a^10)
@assert isone(b^10)
a, b
end
else
@warn "no special set of generators for prime $p"
a,b = let
a = SL₂{p}(1, 0, 1, 1)
b = SL₂{p}(1, 1, 0, 1)
a, b
end
end
E, sizes = RamanujanGraphs.generate_balls([a,b, inv(a), inv(b)], radius=21);
@assert sizes[end] == RamanujanGraphs.order(SL₂{p})
E
end
let Borel_cosets = Bcosets = RamanujanGraphs.CosetDecomposition(SL2p, Borel(SL₂{p})),
α = RamanujanGraphs.generator(RamanujanGraphs.GF{p}(0))
for j in 0:(p-1)÷4
try
h = PrincipalRepr(
α => root_of_unity(CC, (p-1)÷2, j),
Borel_cosets)
@time adjacency = let
A = matrix(CC, h(SL2p[2]))
B = matrix(CC, h(SL2p[3]))
sum(A^i for i in 1:4) + sum(B^i for i in 1:4)
end
@time ev = let evs = safe_eigvals(adjacency)
_count_multiplicites(evs)
end
if length(ev) == 1
@info "Principal Series Representation $j" ev[1]
else
@info "Principal Series Representation $j" ev[1:2] ev[end]
end
catch ex
@error "Principal Series Representation $j failed" ex
ex isa InterruptException && rethrow(ex)
end
end
end
let α = RamanujanGraphs.generator(RamanujanGraphs.GF{p}(0)),
β = RamanujanGraphs.generator_min(QuadraticExt(α))
for j = 1:(p-1)÷4
try
h = DiscreteRepr(
RamanujanGraphs.GF{p}(1) => root_of_unity(CC, p),
β => root_of_unity(CC, (p+1)÷2, j*(p-1)÷4))
@time adjacency = let
A = matrix(CC, h(SL2p[2]))
B = matrix(CC, h(SL2p[3]))
sum(A^i for i in 1:4) + sum(B^i for i in 1:4)
end
@time ev = let evs = safe_eigvals(adjacency)
_count_multiplicites(evs)
end
@info "Discrete Series Representation $j" ev[1:2] ev[end]
catch ex
@error "Discrete Series Representation $j : failed" ex
ex isa InterruptException && rethrow(ex)
end
end
end
# using RamanujanGraphs.LightGraphs
# using Arpack
#
# Γ, eigenvalues = let q = 109
# a = RamanujanGraphs.PSL₂{q}([ 0 1
# 108 11])
# b = RamanujanGraphs.PSL₂{q}([57 2
# 52 42])
#
# S = unique([[a^i for i in 1:4]; [b^i for i in 1:4]])
#
# @info "Generating set S of $(eltype(S))" S
# @time Γ, verts, vlabels, elabels = RamanujanGraphs.cayley_graph((q^3 - q)÷2, S)
# @assert all(LightGraphs.degree(Γ,i) == length(S) for i in vertices(Γ))
# A = adjacency_matrix(Γ)
# @time eigenvalues, _ = eigs(A, nev=5)
# @show Γ eigenvalues
# Γ, eigenvalues
# end