mirror of
https://github.com/kalmarek/SmallHyperbolic
synced 2024-11-09 04:05:27 +01:00
17773 lines
406 KiB
JSON
17773 lines
406 KiB
JSON
[
|
|
{
|
|
"name": "G^{6,40,40}_0",
|
|
"name_utf8": "G⁶'⁴⁰'⁴⁰₀",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"(a*c^-1*a*c)^2",
|
|
"(a^-1*c^-1*a*c^-1)^2"
|
|
],
|
|
"order1": 6,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * c * b * c * a^-1 * c * b * c^-1",
|
|
"b * c * a^-1 * c * b * c * a^-1 * c^-1"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{6,40,48}_0",
|
|
"name_utf8": "G⁶'⁴⁰'⁴⁸₀",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"(a*c)^2*(a^-1*c^-1)^2"
|
|
],
|
|
"order1": 6,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * c * a * c^-1 * b * c^-1 * a^-1 * c^-1",
|
|
"a^-1 * c * b * c * a * c * b * c^-1"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 3
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 3
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{6,40,54}_0",
|
|
"name_utf8": "G⁶'⁴⁰'⁵⁴₀",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a * c^-1 * b^-1 * c^-1 * a * c * b * c",
|
|
"b^-1 * c * a^-1 * c^-1 * b * c^-1 * a * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
10,
|
|
15,
|
|
20,
|
|
25
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"²A₄(4)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{6,40,54}_2",
|
|
"name_utf8": "G⁶'⁴⁰'⁵⁴₂",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"c*a*c^-1*a^-1*c^-1*a*c*a^-1",
|
|
"(c*a*c^-1*a)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * c * a * c^-1 * b * c * a^-1 * c",
|
|
"a * c^-1 * b^-1 * c * a^-1 * c * b^-1 * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
9
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{6,48,48}_0",
|
|
"name_utf8": "G⁶'⁴⁸'⁴⁸₀",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"(a*c)^2*(a^-1*c^-1)^2"
|
|
],
|
|
"order1": 6,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 29,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * c^-1 * b * c",
|
|
"b * c * a * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{6,48,54}_0",
|
|
"name_utf8": "G⁶'⁴⁸'⁵⁴₀",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * c * a * c^-1 * b * c * a * c^-1",
|
|
"a^-1 * c * b * c * a^-1 * c^-1 * b^-1 * c^-1"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
14,
|
|
15,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{6,48,54}_2",
|
|
"name_utf8": "G⁶'⁴⁸'⁵⁴₂",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"c*a*c^-1*a^-1*c^-1*a*c*a^-1",
|
|
"(c*a*c^-1*a)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 41,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * c * a * c^-1 * b * c * a^-1 * c",
|
|
"a * c^-1 * b^-1 * c^-1 * a^-1 * c^-1 * b^-1 * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
},
|
|
{
|
|
"²A₄(4)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{6,54,54}_0",
|
|
"name_utf8": "G⁶'⁵⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"c*b*c^-1*b^-1*c^-1*b*c*b^-1",
|
|
"(c*b*c^-1*b)^3",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a * c^-1 * b^-1 * c^-1 * a * c * b * c",
|
|
"b^-1 * c^-1 * a^-1 * c * b * c^-1 * a * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"²A₄(4)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{6,54,54}_2",
|
|
"name_utf8": "G⁶'⁵⁴'⁵⁴₂",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"c*b*c^-1*b^-1*c^-1*b*c*b^-1",
|
|
"(c*b*c^-1*b)^3",
|
|
"c*a*c^-1*a^-1*c^-1*a*c*a^-1",
|
|
"(c*a*c^-1*a)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 53,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * c * b^-1 * c * a * c^-1 * b * c",
|
|
"b^-1 * c * a^-1 * c * b * c^-1 * a * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
12,
|
|
15,
|
|
18,
|
|
21,
|
|
24,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
},
|
|
{
|
|
"²A₄(4)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{6,54,54}_8",
|
|
"name_utf8": "G⁶'⁵⁴'⁵⁴₈",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"b*c*b^-1*c^-1*b^-1*c*b*c^-1",
|
|
"(b*c*b^-1*c)^3",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 53,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * c^-1 * b * c",
|
|
"b^-1 * c^-1 * a * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
12,
|
|
18,
|
|
21,
|
|
24,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 4
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{8,40,40}_0",
|
|
"name_utf8": "G⁸'⁴⁰'⁴⁰₀",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"(a*c^-1*a*c)^2",
|
|
"(a^-1*c^-1*a*c^-1)^2"
|
|
],
|
|
"order1": 8,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * c^-1 * b * c",
|
|
"b * c^-1 * a^-1 * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(inf^4)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 1
|
|
},
|
|
{
|
|
"C_{2}(4)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"B_{2}(5)": 5
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6,
|
|
10,
|
|
11,
|
|
15,
|
|
20,
|
|
21,
|
|
25,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [
|
|
"L₂(inf⁴)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 1
|
|
},
|
|
{
|
|
"C₂(4)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"B₂(5)": 5
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{8,40,48}_0",
|
|
"name_utf8": "G⁸'⁴⁰'⁴⁸₀",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"(a*c)^2*(a^-1*c^-1)^2"
|
|
],
|
|
"order1": 8,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(5)": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(5)": 4
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{8,40,54}_0",
|
|
"name_utf8": "G⁸'⁴⁰'⁵⁴₀",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"M_{12}": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
6
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"M₁₂": 4
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{8,40,54}_2",
|
|
"name_utf8": "G⁸'⁴⁰'⁵⁴₂",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"c*a*c^-1*a^-1*c^-1*a*c*a^-1",
|
|
"(c*a*c^-1*a)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * c * a * c^-1 * b * c^-1 * a * c",
|
|
"a^-1 * c * b^-1 * c * a^-1 * c * b^-1 * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"M_{12}": 4
|
|
},
|
|
{
|
|
"Alt(10)": 3
|
|
},
|
|
{
|
|
"A_{3}(3)": 2
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
6,
|
|
10,
|
|
12,
|
|
15,
|
|
16,
|
|
21,
|
|
22,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"M₁₂": 4
|
|
},
|
|
{
|
|
"Alt(10)": 3
|
|
},
|
|
{
|
|
"A₃(3)": 2
|
|
},
|
|
{
|
|
"²A₄(4)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{8,48,48}_0",
|
|
"name_utf8": "G⁸'⁴⁸'⁴⁸₀",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"(a*c)^2*(a^-1*c^-1)^2"
|
|
],
|
|
"order1": 8,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 3
|
|
},
|
|
{
|
|
"C_{3}(2)": 4
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
11,
|
|
19,
|
|
25,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 3
|
|
},
|
|
{
|
|
"C₃(2)": 4
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{8,48,48}_1",
|
|
"name_utf8": "G⁸'⁴⁸'⁴⁸₁",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"(a*c^-1)^2*(a^-1*c)^2"
|
|
],
|
|
"order1": 8,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 29,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * c^-1 * a^-1 * c * b * c * a * c^-1",
|
|
"a * c^-1 * b * c * a^-1 * c * b^-1 * c^-1"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"C_{3}(2)": 1
|
|
},
|
|
{
|
|
"B_{2}(5)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
11,
|
|
15,
|
|
19,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"C₃(2)": 1
|
|
},
|
|
{
|
|
"B₂(5)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{8,48,54}_0",
|
|
"name_utf8": "G⁸'⁴⁸'⁵⁴₀",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{8,48,54}_2",
|
|
"name_utf8": "G⁸'⁴⁸'⁵⁴₂",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"c*a*c^-1*a^-1*c^-1*a*c*a^-1",
|
|
"(c*a*c^-1*a)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"C_{3}(2)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
13,
|
|
20,
|
|
26,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"C₃(2)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"²A₄(4)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{8,54,54}_0",
|
|
"name_utf8": "G⁸'⁵⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"c*b*c^-1*b^-1*c^-1*b*c*b^-1",
|
|
"(c*b*c^-1*b)^3",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{8,54,54}_2",
|
|
"name_utf8": "G⁸'⁵⁴'⁵⁴₂",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"c*b*c^-1*b^-1*c^-1*b*c*b^-1",
|
|
"(c*b*c^-1*b)^3",
|
|
"c*a*c^-1*a^-1*c^-1*a*c*a^-1",
|
|
"(c*a*c^-1*a)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 53,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * c^-1 * b^-1 * c",
|
|
"b * c * a * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"C_{3}(2)": 4
|
|
},
|
|
{
|
|
"Alt(10)": 12
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"A_{3}(3)": 5
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"C₃(2)": 4
|
|
},
|
|
{
|
|
"Alt(10)": 12
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"A₃(3)": 5
|
|
},
|
|
{
|
|
"²A₄(4)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 4
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{8,54,54}_8",
|
|
"name_utf8": "G⁸'⁵⁴'⁵⁴₈",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"b*c*b^-1*c^-1*b^-1*c*b*c^-1",
|
|
"(b*c*b^-1*c)^3",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 53,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a * c * b^-1 * c^-1 * a^-1 * c * b * c^-1",
|
|
"b^-1 * c * a * c^-1 * b * c * a^-1 * c^-1"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
18,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,14}_0",
|
|
"name_utf8": "G¹⁴'¹⁴'¹⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c * a^-1 * c^-1 * a * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 14,
|
|
"index": 0,
|
|
"presentation_length": 27,
|
|
"hyperbolic": null,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": true,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"{}^2A_{2}(9)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(25)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"²A₂(9)": 1
|
|
},
|
|
{
|
|
"²A₂(25)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,14}_1",
|
|
"name_utf8": "G¹⁴'¹⁴'¹⁴₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c^-1 * a^-1 * c * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 14,
|
|
"index": 1,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a * c * a * b^-1 * a",
|
|
"a^-1 * b * c * a * b^-1 * a * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": true,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,14,14}_2",
|
|
"name_utf8": "G¹⁴'¹⁴'¹⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"c * a * c^-1 * a^-1 * c * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 14,
|
|
"index": 2,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": true,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,14}_6",
|
|
"name_utf8": "G¹⁴'¹⁴'¹⁴₆",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 14,
|
|
"index": 6,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a",
|
|
"b^-1 * a^-1 * c * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": true,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(8)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(8)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,16}_0",
|
|
"name_utf8": "G¹⁴'¹⁴'¹⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c * a * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 16,
|
|
"index": 0,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a",
|
|
"a^-1 * b^-1 * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(8) or A_{2}(4)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
8
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(8) or A₂(4)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,16}_1",
|
|
"name_utf8": "G¹⁴'¹⁴'¹⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c^-1 * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 16,
|
|
"index": 1,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a * c^-1 * a^-1 * b^-1 * a^-1",
|
|
"b^-1 * a * c * a^-1 * b^-1 * a * c * a^-1"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7)"
|
|
],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,14,16}_4",
|
|
"name_utf8": "G¹⁴'¹⁴'¹⁶₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"a * c * a * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 16,
|
|
"index": 4,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a * c^-1 * a^-1 * b^-1 * a",
|
|
"a^-1 * b * c^-1 * a * b * a * c * b^-1"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,14,16}_5",
|
|
"name_utf8": "G¹⁴'¹⁴'¹⁶₅",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"a * c^-1 * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 16,
|
|
"index": 5,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a * c^-1 * b * a * c^-1 * b * a^-1",
|
|
"b * a^-1 * c^-1 * a * b^-1 * c^-1 * a * b * c * a^-1"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,14,18}_0",
|
|
"name_utf8": "G¹⁴'¹⁴'¹⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 18,
|
|
"index": 0,
|
|
"presentation_length": 33,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"{}^2A_{2}(9)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"²A₂(9)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,18}_4",
|
|
"name_utf8": "G¹⁴'¹⁴'¹⁸₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 18,
|
|
"index": 4,
|
|
"presentation_length": 33,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,14,24}_0",
|
|
"name_utf8": "G¹⁴'¹⁴'²⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7)"
|
|
],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,14,24}_1",
|
|
"name_utf8": "G¹⁴'¹⁴'²⁴₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 24,
|
|
"index": 1,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(25)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"²A₂(25)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,24}_4",
|
|
"name_utf8": "G¹⁴'¹⁴'²⁴₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 24,
|
|
"index": 4,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(8) or A_{2}(4)": 1
|
|
},
|
|
{
|
|
"M_{22}": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
8
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(8) or A₂(4)": 1
|
|
},
|
|
{
|
|
"M₂₂": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,24}_5",
|
|
"name_utf8": "G¹⁴'¹⁴'²⁴₅",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 24,
|
|
"index": 5,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a",
|
|
"c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,26}_0",
|
|
"name_utf8": "G¹⁴'¹⁴'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,14,26}_1",
|
|
"name_utf8": "G¹⁴'¹⁴'²⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(9)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
14
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(9)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,26}_3",
|
|
"name_utf8": "G¹⁴'¹⁴'²⁶₃",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,14,26}_4",
|
|
"name_utf8": "G¹⁴'¹⁴'²⁶₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 26,
|
|
"index": 4,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,14,26}_5",
|
|
"name_utf8": "G¹⁴'¹⁴'²⁶₅",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 26,
|
|
"index": 5,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a",
|
|
"c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,14,26}_7",
|
|
"name_utf8": "G¹⁴'¹⁴'²⁶₇",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 26,
|
|
"index": 7,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a",
|
|
"c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,16}_0",
|
|
"name_utf8": "G¹⁴'¹⁶'¹⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 16,
|
|
"index": 0,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * a * c * b * a^-1 * c^-1",
|
|
"b^-1 * c * a * b^-1 * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7)"
|
|
],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,16}_1",
|
|
"name_utf8": "G¹⁴'¹⁶'¹⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 16,
|
|
"index": 1,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * a^-1 * b * a * c^-1 * a^-1 * b^-1 * a * c^-1 * b^-1",
|
|
"c * a^-1 * b * a * c * a^-1 * b^-1 * a * c^-1 * a^-1 * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,18}_0",
|
|
"name_utf8": "G¹⁴'¹⁶'¹⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 18,
|
|
"index": 0,
|
|
"presentation_length": 33,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a * c * b^-1 * a^-1 * c * b",
|
|
"c^-1 * a^-1 * b^-1 * c^-1 * a * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,24}_0",
|
|
"name_utf8": "G¹⁴'¹⁶'²⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7)"
|
|
],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,24}_1",
|
|
"name_utf8": "G¹⁴'¹⁶'²⁴₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 24,
|
|
"index": 1,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,26}_0",
|
|
"name_utf8": "G¹⁴'¹⁶'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,26}_1",
|
|
"name_utf8": "G¹⁴'¹⁶'²⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,26}_3",
|
|
"name_utf8": "G¹⁴'¹⁶'²⁶₃",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,26}_7",
|
|
"name_utf8": "G¹⁴'¹⁶'²⁶₇",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b * c^-1 * b",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 26,
|
|
"index": 7,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,18,18}_0",
|
|
"name_utf8": "G¹⁴'¹⁸'¹⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 18,
|
|
"index": 0,
|
|
"presentation_length": 39,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,18,24}_0",
|
|
"name_utf8": "G¹⁴'¹⁸'²⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,18,26}_0",
|
|
"name_utf8": "G¹⁴'¹⁸'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,18,26}_3",
|
|
"name_utf8": "G¹⁴'¹⁸'²⁶₃",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 41,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,24,24}_0",
|
|
"name_utf8": "G¹⁴'²⁴'²⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A_{2}(4)": 1
|
|
},
|
|
{
|
|
"J_{2}": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7,
|
|
8,
|
|
22,
|
|
28,
|
|
29,
|
|
31,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A₂(4)": 1
|
|
},
|
|
{
|
|
"J₂": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,24,24}_1",
|
|
"name_utf8": "G¹⁴'²⁴'²⁴₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 1,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,24,26}_0",
|
|
"name_utf8": "G¹⁴'²⁴'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,24,26}_1",
|
|
"name_utf8": "G¹⁴'²⁴'²⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,24,26}_3",
|
|
"name_utf8": "G¹⁴'²⁴'²⁶₃",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,24,26}_7",
|
|
"name_utf8": "G¹⁴'²⁴'²⁶₇",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b * c * b",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 7,
|
|
"presentation_length": 43,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,26}_0",
|
|
"name_utf8": "G¹⁴'²⁶'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,26}_1",
|
|
"name_utf8": "G¹⁴'²⁶'²⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,26}_3",
|
|
"name_utf8": "G¹⁴'²⁶'²⁶₃",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,26}_4",
|
|
"name_utf8": "G¹⁴'²⁶'²⁶₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 4,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,26}_5",
|
|
"name_utf8": "G¹⁴'²⁶'²⁶₅",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 5,
|
|
"presentation_length": 43,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
14
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,26}_15",
|
|
"name_utf8": "G¹⁴'²⁶'²⁶₁5",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(b * c^-1)^3",
|
|
"b * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 15,
|
|
"presentation_length": 43,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{16,16,16}_0",
|
|
"name_utf8": "G¹⁶'¹⁶'¹⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 16,
|
|
"index": 0,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a",
|
|
"a^-1 * b^-1 * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"{}^2A_{2}(9)": 1
|
|
},
|
|
{
|
|
"J_{2}": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(81)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"²A₂(9)": 1
|
|
},
|
|
{
|
|
"J₂": 1
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 1
|
|
},
|
|
{
|
|
"²A₂(81)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,16,16}_1",
|
|
"name_utf8": "G¹⁶'¹⁶'¹⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 16,
|
|
"index": 1,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a * c^-1 * a^-1 * b^-1 * a^-1",
|
|
"b * a * c^-1 * a^-1 * b^-1 * a * c * a^-1"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(9)": 2
|
|
},
|
|
{
|
|
"{}^2A_{2}(81)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 1
|
|
},
|
|
{
|
|
"²A₂(9)": 2
|
|
},
|
|
{
|
|
"²A₂(81)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,16,18}_0",
|
|
"name_utf8": "G¹⁶'¹⁶'¹⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 18,
|
|
"index": 0,
|
|
"presentation_length": 33,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * a * c^-1 * b * a * c^-1",
|
|
"a * c^-1 * b^-1 * a * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,16,24}_0",
|
|
"name_utf8": "G¹⁶'¹⁶'²⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"A_{4}(2)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
34,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"A₄(2)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,16,24}_1",
|
|
"name_utf8": "G¹⁶'¹⁶'²⁴₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 24,
|
|
"index": 1,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * a * c^-1 * b * a * c^-1",
|
|
"a * c^-1 * b^-1 * a * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(9)": 1
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
9,
|
|
21,
|
|
29,
|
|
33,
|
|
34
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(9)": 1
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,16,26}_0",
|
|
"name_utf8": "G¹⁶'¹⁶'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{16,16,26}_1",
|
|
"name_utf8": "G¹⁶'¹⁶'²⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * a * c^-1 * b * a * c^-1",
|
|
"a * c^-1 * b^-1 * a * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
16,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13)"
|
|
],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{16,18,18}_0",
|
|
"name_utf8": "G¹⁶'¹⁸'¹⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 18,
|
|
"index": 0,
|
|
"presentation_length": 39,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * a^-1 * c^-1 * a^-1 * b * a * c^-1 * a",
|
|
"c^-1 * a * b * a * c^-1 * a * b * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,18,24}_0",
|
|
"name_utf8": "G¹⁶'¹⁸'²⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(10)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
19,
|
|
34
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(10)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,18,26}_0",
|
|
"name_utf8": "G¹⁶'¹⁸'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{16,24,24}_0",
|
|
"name_utf8": "G¹⁶'²⁴'²⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A_{2}(4)": 2
|
|
},
|
|
{
|
|
"{}^2A_{2}(25)": 1
|
|
},
|
|
{
|
|
"J_{2}": 1
|
|
},
|
|
{
|
|
"C_{3}(2)": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"B_{2}(5)": 1
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
8,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
27,
|
|
28,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A₂(4)": 2
|
|
},
|
|
{
|
|
"²A₂(25)": 1
|
|
},
|
|
{
|
|
"J₂": 1
|
|
},
|
|
{
|
|
"C₃(2)": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"B₂(5)": 1
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,24,24}_1",
|
|
"name_utf8": "G¹⁶'²⁴'²⁴₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 1,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"C_{3}(2)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
17,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
27,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"C₃(2)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,24,26}_0",
|
|
"name_utf8": "G¹⁶'²⁴'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{16,24,26}_1",
|
|
"name_utf8": "G¹⁶'²⁴'²⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13)"
|
|
],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{16,26,26}_0",
|
|
"name_utf8": "G¹⁶'²⁶'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{16,26,26}_1",
|
|
"name_utf8": "G¹⁶'²⁶'²⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,26,26}_3",
|
|
"name_utf8": "G¹⁶'²⁶'²⁶₃",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"G_{2}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"G₂(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,26,26}_5",
|
|
"name_utf8": "G¹⁶'²⁶'²⁶₅",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 5,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 1
|
|
},
|
|
{
|
|
"G_{2}(3)": 1
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
14,
|
|
26,
|
|
28,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 1
|
|
},
|
|
{
|
|
"G₂(3)": 1
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,18,18}_0",
|
|
"name_utf8": "G¹⁸'¹⁸'¹⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 18,
|
|
"order2": 18,
|
|
"order3": 18,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a",
|
|
"b * a * c * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
27,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,18,24}_0",
|
|
"name_utf8": "G¹⁸'¹⁸'²⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 18,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a",
|
|
"b * a * c * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,18,26}_0",
|
|
"name_utf8": "G¹⁸'¹⁸'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 18,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a",
|
|
"b * a * c * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,24,24}_0",
|
|
"name_utf8": "G¹⁸'²⁴'²⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
15,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,24,26}_0",
|
|
"name_utf8": "G¹⁸'²⁴'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{18,26,26}_0",
|
|
"name_utf8": "G¹⁸'²⁶'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"G_{2}(3)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"G₂(3)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,26,26}_1",
|
|
"name_utf8": "G¹⁸'²⁶'²⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b^-1 * c^-1 * b^-1",
|
|
"b * a * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"G_{2}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"G₂(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,24,24}_0",
|
|
"name_utf8": "G²⁴'²⁴'²⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 3
|
|
},
|
|
{
|
|
"M_{12}": 1
|
|
},
|
|
{
|
|
"A_{2}(7)": 1
|
|
},
|
|
{
|
|
"B_{2}(5)": 3
|
|
},
|
|
{
|
|
"A_{4}(2)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
13,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 3
|
|
},
|
|
{
|
|
"M₁₂": 1
|
|
},
|
|
{
|
|
"A₂(7)": 1
|
|
},
|
|
{
|
|
"B₂(5)": 3
|
|
},
|
|
{
|
|
"A₄(2)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,24,24}_1",
|
|
"name_utf8": "G²⁴'²⁴'²⁴₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 1,
|
|
"presentation_length": 51,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b^-1 * c^-1 * b^-1",
|
|
"b * a * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"M_{22}": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"M₂₂": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,24,26}_0",
|
|
"name_utf8": "G²⁴'²⁴'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{24,24,26}_1",
|
|
"name_utf8": "G²⁴'²⁴'²⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 51,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b^-1 * c^-1 * b^-1",
|
|
"b * a * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,26,26}_0",
|
|
"name_utf8": "G²⁴'²⁶'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
26,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{24,26,26}_1",
|
|
"name_utf8": "G²⁴'²⁶'²⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 51,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b^-1 * c^-1 * b^-1",
|
|
"b * a * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,26,26}_3",
|
|
"name_utf8": "G²⁴'²⁶'²⁶₃",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 51,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b^-1 * c^-1 * b^-1",
|
|
"b * a * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
16,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,26,26}_5",
|
|
"name_utf8": "G²⁴'²⁶'²⁶₅",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 5,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,26,26}_0",
|
|
"name_utf8": "G²⁶'²⁶'²⁶₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 1
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 1
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,26,26}_1",
|
|
"name_utf8": "G²⁶'²⁶'²⁶₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 51,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b^-1 * c^-1 * b^-1",
|
|
"b * a * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"{}^2A_{2}(16)": 2
|
|
},
|
|
{
|
|
"G_{2}(3)": 6
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
13,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"²A₂(16)": 2
|
|
},
|
|
{
|
|
"G₂(3)": 6
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,26,26}_5",
|
|
"name_utf8": "G²⁶'²⁶'²⁶₅",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 5,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"{}^2A_{2}(16)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"²A₂(16)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,26,26}_21",
|
|
"name_utf8": "G²⁶'²⁶'²⁶₂1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a^-1)^3",
|
|
"b * a^-1 * b^-1 * a^-1 * b^-1 * a^-1 * b^-1 * a",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 21,
|
|
"presentation_length": 51,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * a * c^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 5
|
|
},
|
|
{
|
|
"{}^2A_{2}(16)": 3
|
|
},
|
|
{
|
|
"G_{2}(3)": 1
|
|
},
|
|
{
|
|
"{}^2F_4(2)'": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
13,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 36,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 5
|
|
},
|
|
{
|
|
"²A₂(16)": 3
|
|
},
|
|
{
|
|
"G₂(3)": 1
|
|
},
|
|
{
|
|
"²F₄(2)'": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,40}_0",
|
|
"name_utf8": "G¹⁴'¹⁴'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"J_{1}": 2
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"J₁": 2
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,40}_4",
|
|
"name_utf8": "G¹⁴'¹⁴'⁴⁰₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 40,
|
|
"index": 4,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"M_{22}": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
7,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"M₂₂": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,48}_0",
|
|
"name_utf8": "G¹⁴'¹⁴'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(25)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"²A₂(25)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,48}_1",
|
|
"name_utf8": "G¹⁴'¹⁴'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(8) or A_{2}(4)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
8
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(8) or A₂(4)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,48}_4",
|
|
"name_utf8": "G¹⁴'¹⁴'⁴⁸₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 48,
|
|
"index": 4,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,48}_5",
|
|
"name_utf8": "G¹⁴'¹⁴'⁴⁸₅",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 48,
|
|
"index": 5,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(8) or A_{2}(4)": 1
|
|
},
|
|
{
|
|
"M_{22}": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
8,
|
|
21
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(8) or A₂(4)": 1
|
|
},
|
|
{
|
|
"M₂₂": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,54}_0",
|
|
"name_utf8": "G¹⁴'¹⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"{}^2A_{2}(9)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"²A₂(9)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,14,54}_4",
|
|
"name_utf8": "G¹⁴'¹⁴'⁵⁴₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 54,
|
|
"index": 4,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,40}_0",
|
|
"name_utf8": "G¹⁴'¹⁶'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7^2)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7²)"
|
|
],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,48}_0",
|
|
"name_utf8": "G¹⁴'¹⁶'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,48}_1",
|
|
"name_utf8": "G¹⁴'¹⁶'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7)"
|
|
],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,54}_0",
|
|
"name_utf8": "G¹⁴'¹⁶'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,16,54}_2",
|
|
"name_utf8": "G¹⁴'¹⁶'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,18,40}_0",
|
|
"name_utf8": "G¹⁴'¹⁸'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"J_{2}": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
21,
|
|
25
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"J₂": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,18,48}_0",
|
|
"name_utf8": "G¹⁴'¹⁸'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"G_{2}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"G₂(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,18,54}_0",
|
|
"name_utf8": "G¹⁴'¹⁸'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,18,54}_2",
|
|
"name_utf8": "G¹⁴'¹⁸'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
21,
|
|
28,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,24,40}_0",
|
|
"name_utf8": "G¹⁴'²⁴'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"A_{4}(2)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
7,
|
|
10
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"A₄(2)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,24,48}_0",
|
|
"name_utf8": "G¹⁴'²⁴'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,24,48}_1",
|
|
"name_utf8": "G¹⁴'²⁴'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A_{2}(4)": 1
|
|
},
|
|
{
|
|
"J_{2}": 1
|
|
},
|
|
{
|
|
"C_{3}(2)": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7,
|
|
8,
|
|
15,
|
|
22,
|
|
28,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A₂(4)": 1
|
|
},
|
|
{
|
|
"J₂": 1
|
|
},
|
|
{
|
|
"C₃(2)": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,24,54}_0",
|
|
"name_utf8": "G¹⁴'²⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
18
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,24,54}_2",
|
|
"name_utf8": "G¹⁴'²⁴'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"C_{3}(2)": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
14,
|
|
21,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"C₃(2)": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,26,40}_0",
|
|
"name_utf8": "G¹⁴'²⁶'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,40}_4",
|
|
"name_utf8": "G¹⁴'²⁶'⁴⁰₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 4,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,48}_0",
|
|
"name_utf8": "G¹⁴'²⁶'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,48}_1",
|
|
"name_utf8": "G¹⁴'²⁶'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,48}_4",
|
|
"name_utf8": "G¹⁴'²⁶'⁴⁸₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 4,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,48}_5",
|
|
"name_utf8": "G¹⁴'²⁶'⁴⁸₅",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 5,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,54}_0",
|
|
"name_utf8": "G¹⁴'²⁶'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,54}_2",
|
|
"name_utf8": "G¹⁴'²⁶'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,54}_4",
|
|
"name_utf8": "G¹⁴'²⁶'⁵⁴₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 4,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,26,54}_6",
|
|
"name_utf8": "G¹⁴'²⁶'⁵⁴₆",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 6,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{16,16,40}_0",
|
|
"name_utf8": "G¹⁶'¹⁶'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"M_{11}": 1
|
|
},
|
|
{
|
|
"B_{2}(3)": 1
|
|
},
|
|
{
|
|
"J_{2}": 2
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"B_{2}(5)": 1
|
|
},
|
|
{
|
|
"A_{3}(3)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
21,
|
|
26,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"M₁₁": 1
|
|
},
|
|
{
|
|
"B₂(3)": 1
|
|
},
|
|
{
|
|
"J₂": 2
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"B₂(5)": 1
|
|
},
|
|
{
|
|
"A₃(3)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,16,48}_0",
|
|
"name_utf8": "G¹⁶'¹⁶'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(9)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(81)": 2
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
9,
|
|
21,
|
|
26,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 1
|
|
},
|
|
{
|
|
"²A₂(9)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 1
|
|
},
|
|
{
|
|
"²A₂(81)": 2
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,16,48}_1",
|
|
"name_utf8": "G¹⁶'¹⁶'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"{}^2A_{2}(9)": 1
|
|
},
|
|
{
|
|
"J_{2}": 1
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"B_{2}(5)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{4}(2)": 1
|
|
},
|
|
{
|
|
"A_{2}(9)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(81)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"²A₂(9)": 1
|
|
},
|
|
{
|
|
"J₂": 1
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"B₂(5)": 1
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₄(2)": 1
|
|
},
|
|
{
|
|
"A₂(9)": 1
|
|
},
|
|
{
|
|
"²A₂(81)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,16,54}_0",
|
|
"name_utf8": "G¹⁶'¹⁶'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 1
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
18,
|
|
22,
|
|
25,
|
|
26,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 1
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,18,40}_0",
|
|
"name_utf8": "G¹⁶'¹⁸'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"M_{12}": 5
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
6,
|
|
18,
|
|
24,
|
|
27,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"M₁₂": 5
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,18,48}_0",
|
|
"name_utf8": "G¹⁶'¹⁸'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
17,
|
|
19,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,18,54}_0",
|
|
"name_utf8": "G¹⁶'¹⁸'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
25,
|
|
26,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,18,54}_2",
|
|
"name_utf8": "G¹⁶'¹⁸'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
20,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,24,40}_0",
|
|
"name_utf8": "G¹⁶'²⁴'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(5)": 2
|
|
},
|
|
{
|
|
"A_{4}(2)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6,
|
|
11,
|
|
21,
|
|
22
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(5)": 2
|
|
},
|
|
{
|
|
"A₄(2)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,24,48}_0",
|
|
"name_utf8": "G¹⁶'²⁴'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(9)": 1
|
|
},
|
|
{
|
|
"C_{3}(2)": 5
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
9,
|
|
14,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(9)": 1
|
|
},
|
|
{
|
|
"C₃(2)": 5
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,24,48}_1",
|
|
"name_utf8": "G¹⁶'²⁴'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A_{2}(4)": 2
|
|
},
|
|
{
|
|
"{}^2A_{2}(25)": 1
|
|
},
|
|
{
|
|
"J_{2}": 1
|
|
},
|
|
{
|
|
"C_{3}(2)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"B_{2}(5)": 1
|
|
},
|
|
{
|
|
"A_{4}(2)": 1
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
8,
|
|
10,
|
|
12,
|
|
15,
|
|
16,
|
|
18,
|
|
19,
|
|
20,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A₂(4)": 2
|
|
},
|
|
{
|
|
"²A₂(25)": 1
|
|
},
|
|
{
|
|
"J₂": 1
|
|
},
|
|
{
|
|
"C₃(2)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"B₂(5)": 1
|
|
},
|
|
{
|
|
"A₄(2)": 1
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,24,54}_0",
|
|
"name_utf8": "G¹⁶'²⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(9)": 1
|
|
},
|
|
{
|
|
"C_{3}(2)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
12,
|
|
18,
|
|
19,
|
|
21,
|
|
25,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(9)": 1
|
|
},
|
|
{
|
|
"C₃(2)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,24,54}_2",
|
|
"name_utf8": "G¹⁶'²⁴'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
12,
|
|
14,
|
|
16,
|
|
19,
|
|
20,
|
|
22,
|
|
23,
|
|
24,
|
|
26,
|
|
27,
|
|
28,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,26,40}_0",
|
|
"name_utf8": "G¹⁶'²⁶'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"{}^2F_4(2)'": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"²F₄(2)'": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,26,48}_0",
|
|
"name_utf8": "G¹⁶'²⁶'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
16,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13)"
|
|
],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{16,26,48}_1",
|
|
"name_utf8": "G¹⁶'²⁶'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{16,26,54}_0",
|
|
"name_utf8": "G¹⁶'²⁶'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{16,26,54}_2",
|
|
"name_utf8": "G¹⁶'²⁶'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{18,18,40}_0",
|
|
"name_utf8": "G¹⁸'¹⁸'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 18,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"M_{12}": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
12,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
24,
|
|
26,
|
|
27,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"M₁₂": 2
|
|
},
|
|
{
|
|
"A₃(3)": 4
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,18,48}_0",
|
|
"name_utf8": "G¹⁸'¹⁸'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 18,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,18,54}_0",
|
|
"name_utf8": "G¹⁸'¹⁸'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 18,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
19,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,24,40}_0",
|
|
"name_utf8": "G¹⁸'²⁴'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 24,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"M_{12}": 6
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"M₁₂": 6
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"²A₃(9)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 4
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,24,48}_0",
|
|
"name_utf8": "G¹⁸'²⁴'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"A_{3}(3)": 2
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"A₃(3)": 2
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,24,54}_0",
|
|
"name_utf8": "G¹⁸'²⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 4
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 4
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,24,54}_2",
|
|
"name_utf8": "G¹⁸'²⁴'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 18,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,26,40}_0",
|
|
"name_utf8": "G¹⁸'²⁶'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{18,26,48}_0",
|
|
"name_utf8": "G¹⁸'²⁶'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"G_{2}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"G₂(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,26,54}_0",
|
|
"name_utf8": "G¹⁸'²⁶'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
26,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,26,54}_2",
|
|
"name_utf8": "G¹⁸'²⁶'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 18,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,24,40}_0",
|
|
"name_utf8": "G²⁴'²⁴'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)",
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"M_{22}": 2
|
|
},
|
|
{
|
|
"J_{2}": 4
|
|
},
|
|
{
|
|
"C_{2}(4)": 4
|
|
},
|
|
{
|
|
"C_{3}(2)": 1
|
|
},
|
|
{
|
|
"B_{2}(5)": 8
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
},
|
|
{
|
|
"A_{4}(2)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
7,
|
|
12,
|
|
13,
|
|
15,
|
|
16,
|
|
17,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)",
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"M₂₂": 2
|
|
},
|
|
{
|
|
"J₂": 4
|
|
},
|
|
{
|
|
"C₂(4)": 4
|
|
},
|
|
{
|
|
"C₃(2)": 1
|
|
},
|
|
{
|
|
"B₂(5)": 8
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
},
|
|
{
|
|
"A₄(2)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,24,48}_0",
|
|
"name_utf8": "G²⁴'²⁴'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"M_{22}": 1
|
|
},
|
|
{
|
|
"C_{3}(2)": 6
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 5
|
|
},
|
|
{
|
|
"B_{2}(5)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"M₂₂": 1
|
|
},
|
|
{
|
|
"C₃(2)": 6
|
|
},
|
|
{
|
|
"²A₃(9)": 5
|
|
},
|
|
{
|
|
"B₂(5)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,24,48}_1",
|
|
"name_utf8": "G²⁴'²⁴'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 3
|
|
},
|
|
{
|
|
"Alt(8) or A_{2}(4)": 2
|
|
},
|
|
{
|
|
"M_{12}": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(25)": 1
|
|
},
|
|
{
|
|
"J_{2}": 1
|
|
},
|
|
{
|
|
"C_{3}(2)": 3
|
|
},
|
|
{
|
|
"A_{2}(7)": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"B_{2}(5)": 3
|
|
},
|
|
{
|
|
"A_{4}(2)": 1
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 2
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
8,
|
|
13,
|
|
14,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 3
|
|
},
|
|
{
|
|
"Alt(8) or A₂(4)": 2
|
|
},
|
|
{
|
|
"M₁₂": 1
|
|
},
|
|
{
|
|
"²A₂(25)": 1
|
|
},
|
|
{
|
|
"J₂": 1
|
|
},
|
|
{
|
|
"C₃(2)": 3
|
|
},
|
|
{
|
|
"A₂(7)": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"B₂(5)": 3
|
|
},
|
|
{
|
|
"A₄(2)": 1
|
|
},
|
|
{
|
|
"²A₄(4)": 2
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,24,54}_0",
|
|
"name_utf8": "G²⁴'²⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(9)": 3
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
16,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(9)": 3
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,26,40}_0",
|
|
"name_utf8": "G²⁴'²⁶'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13^2)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13²)"
|
|
],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{24,26,48}_0",
|
|
"name_utf8": "G²⁴'²⁶'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,26,48}_1",
|
|
"name_utf8": "G²⁴'²⁶'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
14,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{24,26,54}_0",
|
|
"name_utf8": "G²⁴'²⁶'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,26,54}_2",
|
|
"name_utf8": "G²⁴'²⁶'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{26,26,40}_0",
|
|
"name_utf8": "G²⁶'²⁶'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{26,26,40}_4",
|
|
"name_utf8": "G²⁶'²⁶'⁴⁰₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 4,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"{}^2A_{2}(16)": 1
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
13,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"²A₂(16)": 1
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,26,48}_0",
|
|
"name_utf8": "G²⁶'²⁶'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"G_{2}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
16,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"G₂(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,26,48}_1",
|
|
"name_utf8": "G²⁶'²⁶'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
26,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{26,26,48}_4",
|
|
"name_utf8": "G²⁶'²⁶'⁴⁸₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 4,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"G_{2}(3)": 1
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
26,
|
|
27,
|
|
28,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"G₂(3)": 1
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,26,48}_5",
|
|
"name_utf8": "G²⁶'²⁶'⁴⁸₅",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 5,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,26,54}_0",
|
|
"name_utf8": "G²⁶'²⁶'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"G_{2}(3)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"G₂(3)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,26,54}_4",
|
|
"name_utf8": "G²⁶'²⁶'⁵⁴₄",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 4,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"G_{2}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"G₂(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,40,40}_0",
|
|
"name_utf8": "G¹⁴'⁴⁰'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(8) or A_{2}(4)": 5
|
|
},
|
|
{
|
|
"C_{3}(2)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 2
|
|
},
|
|
{
|
|
"A_{4}(2)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 3
|
|
},
|
|
{
|
|
"A_{2}(9)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
10,
|
|
11,
|
|
20,
|
|
21,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(8) or A₂(4)": 5
|
|
},
|
|
{
|
|
"C₃(2)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"²A₃(9)": 2
|
|
},
|
|
{
|
|
"A₄(2)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 3
|
|
},
|
|
{
|
|
"A₂(9)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,40,48}_0",
|
|
"name_utf8": "G¹⁴'⁴⁰'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 39,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"A_{4}(2)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
7,
|
|
10
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"A₄(2)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,40,54}_0",
|
|
"name_utf8": "G¹⁴'⁴⁰'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"J_{2}": 1
|
|
},
|
|
{
|
|
"C_{3}(2)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
21,
|
|
25
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"J₂": 1
|
|
},
|
|
{
|
|
"C₃(2)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,40,54}_2",
|
|
"name_utf8": "G¹⁴'⁴⁰'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"J_{2}": 1
|
|
},
|
|
{
|
|
"C_{3}(2)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
20,
|
|
21,
|
|
22,
|
|
25,
|
|
27,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"J₂": 1
|
|
},
|
|
{
|
|
"C₃(2)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,48,48}_0",
|
|
"name_utf8": "G¹⁴'⁴⁸'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 31,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A_{2}(4)": 1
|
|
},
|
|
{
|
|
"J_{2}": 1
|
|
},
|
|
{
|
|
"C_{3}(2)": 2
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"G_{2}(3)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7,
|
|
8,
|
|
15,
|
|
16,
|
|
22,
|
|
23,
|
|
24,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(7)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A₂(4)": 1
|
|
},
|
|
{
|
|
"J₂": 1
|
|
},
|
|
{
|
|
"C₃(2)": 2
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"G₂(3)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,48,48}_1",
|
|
"name_utf8": "G¹⁴'⁴⁸'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 31,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,48,54}_0",
|
|
"name_utf8": "G¹⁴'⁴⁸'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"G_{2}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
18
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"G₂(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,48,54}_2",
|
|
"name_utf8": "G¹⁴'⁴⁸'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"C_{3}(2)": 3
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"G_{2}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
14,
|
|
15,
|
|
21,
|
|
22,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"C₃(2)": 3
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"G₂(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,54,54}_0",
|
|
"name_utf8": "G¹⁴'⁵⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
21,
|
|
28,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{14,54,54}_2",
|
|
"name_utf8": "G¹⁴'⁵⁴'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(10)": 6
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
10,
|
|
13,
|
|
14,
|
|
17,
|
|
19,
|
|
20,
|
|
21,
|
|
23,
|
|
24,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(10)": 6
|
|
},
|
|
{
|
|
"²A₃(9)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{14,54,54}_8",
|
|
"name_utf8": "G¹⁴'⁵⁴'⁵⁴₈",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
18,
|
|
21,
|
|
27,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{16,40,40}_0",
|
|
"name_utf8": "G¹⁶'⁴⁰'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(inf^4)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"M_{11}": 4
|
|
},
|
|
{
|
|
"B_{2}(3)": 7
|
|
},
|
|
{
|
|
"{}^2A_{2}(25)": 1
|
|
},
|
|
{
|
|
"J_{2}": 2
|
|
},
|
|
{
|
|
"C_{2}(4)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 4
|
|
},
|
|
{
|
|
"B_{2}(5)": 11
|
|
},
|
|
{
|
|
"A_{3}(3)": 2
|
|
},
|
|
{
|
|
"Alt(11)": 6
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6,
|
|
10,
|
|
11,
|
|
15,
|
|
16,
|
|
17,
|
|
20,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(inf⁴)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"M₁₁": 4
|
|
},
|
|
{
|
|
"B₂(3)": 7
|
|
},
|
|
{
|
|
"²A₂(25)": 1
|
|
},
|
|
{
|
|
"J₂": 2
|
|
},
|
|
{
|
|
"C₂(4)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"²A₃(9)": 4
|
|
},
|
|
{
|
|
"B₂(5)": 11
|
|
},
|
|
{
|
|
"A₃(3)": 2
|
|
},
|
|
{
|
|
"Alt(11)": 6
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,40,48}_0",
|
|
"name_utf8": "G¹⁶'⁴⁰'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 39,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"M_{11}": 1
|
|
},
|
|
{
|
|
"B_{2}(3)": 1
|
|
},
|
|
{
|
|
"J_{2}": 2
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"B_{2}(5)": 5
|
|
},
|
|
{
|
|
"A_{3}(3)": 2
|
|
},
|
|
{
|
|
"A_{4}(2)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6,
|
|
11,
|
|
16,
|
|
18,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"M₁₁": 1
|
|
},
|
|
{
|
|
"B₂(3)": 1
|
|
},
|
|
{
|
|
"J₂": 2
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"B₂(5)": 5
|
|
},
|
|
{
|
|
"A₃(3)": 2
|
|
},
|
|
{
|
|
"A₄(2)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,40,54}_0",
|
|
"name_utf8": "G¹⁶'⁴⁰'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 5
|
|
},
|
|
{
|
|
"M_{12}": 5
|
|
},
|
|
{
|
|
"C_{3}(2)": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 3
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
6,
|
|
12,
|
|
17,
|
|
18,
|
|
21,
|
|
23,
|
|
24,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 5
|
|
},
|
|
{
|
|
"M₁₂": 5
|
|
},
|
|
{
|
|
"C₃(2)": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 3
|
|
},
|
|
{
|
|
"²A₄(4)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,40,54}_2",
|
|
"name_utf8": "G¹⁶'⁴⁰'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 4
|
|
},
|
|
{
|
|
"M_{12}": 5
|
|
},
|
|
{
|
|
"Alt(10)": 3
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 4
|
|
},
|
|
{
|
|
"A_{3}(3)": 4
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
6,
|
|
10,
|
|
12,
|
|
15,
|
|
16,
|
|
18,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 4
|
|
},
|
|
{
|
|
"M₁₂": 5
|
|
},
|
|
{
|
|
"Alt(10)": 3
|
|
},
|
|
{
|
|
"²A₃(9)": 4
|
|
},
|
|
{
|
|
"A₃(3)": 4
|
|
},
|
|
{
|
|
"²A₄(4)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,48,48}_0",
|
|
"name_utf8": "G¹⁶'⁴⁸'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 31,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(9)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A_{2}(4)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 5
|
|
},
|
|
{
|
|
"{}^2A_{2}(25)": 1
|
|
},
|
|
{
|
|
"J_{2}": 2
|
|
},
|
|
{
|
|
"C_{3}(2)": 5
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 4
|
|
},
|
|
{
|
|
"B_{2}(5)": 5
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 5
|
|
},
|
|
{
|
|
"A_{4}(2)": 2
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"A_{2}(9)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(81)": 2
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
8,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
16,
|
|
18,
|
|
19,
|
|
20,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"²A₂(9)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A₂(4)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 5
|
|
},
|
|
{
|
|
"²A₂(25)": 1
|
|
},
|
|
{
|
|
"J₂": 2
|
|
},
|
|
{
|
|
"C₃(2)": 5
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"²A₃(9)": 4
|
|
},
|
|
{
|
|
"B₂(5)": 5
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 5
|
|
},
|
|
{
|
|
"A₄(2)": 2
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"A₂(9)": 1
|
|
},
|
|
{
|
|
"²A₂(81)": 2
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,48,48}_1",
|
|
"name_utf8": "G¹⁶'⁴⁸'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 31,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(9)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 8
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"C_{3}(2)": 10
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"A_{3}(3)": 6
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(81)": 2
|
|
},
|
|
{
|
|
"HS": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
9,
|
|
11,
|
|
14,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 1
|
|
},
|
|
{
|
|
"²A₂(9)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 8
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"C₃(2)": 10
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"A₃(3)": 6
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"²A₂(81)": 2
|
|
},
|
|
{
|
|
"HS": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,48,54}_0",
|
|
"name_utf8": "G¹⁶'⁴⁸'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 4
|
|
},
|
|
{
|
|
"Alt(9)": 1
|
|
},
|
|
{
|
|
"C_{3}(2)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 3
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 1
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
12,
|
|
17,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 4
|
|
},
|
|
{
|
|
"Alt(9)": 1
|
|
},
|
|
{
|
|
"C₃(2)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 3
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
},
|
|
{
|
|
"²A₄(4)": 1
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,48,54}_2",
|
|
"name_utf8": "G¹⁶'⁴⁸'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 4
|
|
},
|
|
{
|
|
"C_{3}(2)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 3
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 3
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 5
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 4
|
|
},
|
|
{
|
|
"C₃(2)": 1
|
|
},
|
|
{
|
|
"Alt(10)": 3
|
|
},
|
|
{
|
|
"²A₃(9)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 3
|
|
},
|
|
{
|
|
"²A₄(4)": 5
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,54,54}_0",
|
|
"name_utf8": "G¹⁶'⁵⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
20,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"²A₄(4)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,54,54}_2",
|
|
"name_utf8": "G¹⁶'⁵⁴'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 6
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"C_{3}(2)": 4
|
|
},
|
|
{
|
|
"Alt(10)": 12
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 3
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 5
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 5
|
|
},
|
|
{
|
|
"Alt(11)": 6
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 6
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"C₃(2)": 4
|
|
},
|
|
{
|
|
"Alt(10)": 12
|
|
},
|
|
{
|
|
"²A₃(9)": 3
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 5
|
|
},
|
|
{
|
|
"²A₄(4)": 5
|
|
},
|
|
{
|
|
"Alt(11)": 6
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{16,54,54}_8",
|
|
"name_utf8": "G¹⁶'⁵⁴'⁵⁴₈",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 4
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 3
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 7
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 3
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
12,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 4
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"²A₃(9)": 3
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 7
|
|
},
|
|
{
|
|
"²A₄(4)": 3
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,40,40}_0",
|
|
"name_utf8": "G¹⁸'⁴⁰'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 5
|
|
},
|
|
{
|
|
"M_{12}": 2
|
|
},
|
|
{
|
|
"Alt(10)": 8
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
7,
|
|
10,
|
|
15,
|
|
17,
|
|
20,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 5
|
|
},
|
|
{
|
|
"M₁₂": 2
|
|
},
|
|
{
|
|
"Alt(10)": 8
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"²A₄(4)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,40,48}_0",
|
|
"name_utf8": "G¹⁸'⁴⁰'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 5
|
|
},
|
|
{
|
|
"M_{12}": 7
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 4
|
|
},
|
|
{
|
|
"A_{3}(3)": 10
|
|
},
|
|
{
|
|
"Alt(11)": 5
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
10,
|
|
11,
|
|
12,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 5
|
|
},
|
|
{
|
|
"M₁₂": 7
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"²A₃(9)": 4
|
|
},
|
|
{
|
|
"A₃(3)": 10
|
|
},
|
|
{
|
|
"Alt(11)": 5
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,40,54}_0",
|
|
"name_utf8": "G¹⁸'⁴⁰'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"M_{12}": 2
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"A_{3}(3)": 14
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
10,
|
|
12,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"M₁₂": 2
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"A₃(3)": 14
|
|
},
|
|
{
|
|
"²A₄(4)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,40,54}_2",
|
|
"name_utf8": "G¹⁸'⁴⁰'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 18,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"M_{12}": 2
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 3
|
|
},
|
|
{
|
|
"A_{3}(3)": 5
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
9,
|
|
12,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"M₁₂": 2
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"²A₃(9)": 3
|
|
},
|
|
{
|
|
"A₃(3)": 5
|
|
},
|
|
{
|
|
"²A₄(4)": 4
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,48,48}_0",
|
|
"name_utf8": "G¹⁸'⁴⁸'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 3
|
|
},
|
|
{
|
|
"Alt(10)": 3
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 4
|
|
},
|
|
{
|
|
"A_{3}(3)": 9
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 3
|
|
},
|
|
{
|
|
"Alt(10)": 3
|
|
},
|
|
{
|
|
"²A₃(9)": 4
|
|
},
|
|
{
|
|
"A₃(3)": 9
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,48,54}_0",
|
|
"name_utf8": "G¹⁸'⁴⁸'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 8
|
|
},
|
|
{
|
|
"Alt(11)": 4
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
12,
|
|
14,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 8
|
|
},
|
|
{
|
|
"Alt(11)": 4
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,48,54}_2",
|
|
"name_utf8": "G¹⁸'⁴⁸'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 18,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 3
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 3
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
},
|
|
{
|
|
"²A₄(4)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,54,54}_0",
|
|
"name_utf8": "G¹⁸'⁵⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 61,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
19,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"²A₄(4)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,54,54}_2",
|
|
"name_utf8": "G¹⁸'⁵⁴'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 18,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 61,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 10
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 3
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 9
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
12,
|
|
15,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 10
|
|
},
|
|
{
|
|
"²A₃(9)": 3
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
},
|
|
{
|
|
"²A₄(4)": 9
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{18,54,54}_8",
|
|
"name_utf8": "G¹⁸'⁵⁴'⁵⁴₈",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 61,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 8
|
|
},
|
|
{
|
|
"A_{3}(3)": 10
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 4
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
12,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 8
|
|
},
|
|
{
|
|
"A₃(3)": 10
|
|
},
|
|
{
|
|
"²A₄(4)": 4
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,40,40}_0",
|
|
"name_utf8": "G²⁴'⁴⁰'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(inf^4)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"M_{22}": 2
|
|
},
|
|
{
|
|
"J_{2}": 2
|
|
},
|
|
{
|
|
"C_{2}(4)": 2
|
|
},
|
|
{
|
|
"C_{3}(2)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"B_{2}(5)": 10
|
|
},
|
|
{
|
|
"A_{4}(2)": 4
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 4
|
|
},
|
|
{
|
|
"Alt(11)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6,
|
|
7,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
17,
|
|
18,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(inf⁴)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"M₂₂": 2
|
|
},
|
|
{
|
|
"J₂": 2
|
|
},
|
|
{
|
|
"C₂(4)": 2
|
|
},
|
|
{
|
|
"C₃(2)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"B₂(5)": 10
|
|
},
|
|
{
|
|
"A₄(2)": 4
|
|
},
|
|
{
|
|
"²A₄(4)": 4
|
|
},
|
|
{
|
|
"Alt(11)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,40,48}_0",
|
|
"name_utf8": "G²⁴'⁴⁰'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)",
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 3
|
|
},
|
|
{
|
|
"M_{22}": 2
|
|
},
|
|
{
|
|
"J_{2}": 4
|
|
},
|
|
{
|
|
"C_{2}(4)": 4
|
|
},
|
|
{
|
|
"C_{3}(2)": 3
|
|
},
|
|
{
|
|
"B_{2}(5)": 12
|
|
},
|
|
{
|
|
"A_{3}(3)": 2
|
|
},
|
|
{
|
|
"A_{4}(2)": 5
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
7,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)",
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 3
|
|
},
|
|
{
|
|
"M₂₂": 2
|
|
},
|
|
{
|
|
"J₂": 4
|
|
},
|
|
{
|
|
"C₂(4)": 4
|
|
},
|
|
{
|
|
"C₃(2)": 3
|
|
},
|
|
{
|
|
"B₂(5)": 12
|
|
},
|
|
{
|
|
"A₃(3)": 2
|
|
},
|
|
{
|
|
"A₄(2)": 5
|
|
},
|
|
{
|
|
"²A₄(4)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 4
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,40,54}_0",
|
|
"name_utf8": "G²⁴'⁴⁰'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 59,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 4
|
|
},
|
|
{
|
|
"M_{12}": 6
|
|
},
|
|
{
|
|
"Alt(10)": 12
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 3
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 4
|
|
},
|
|
{
|
|
"Alt(11)": 12
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 4
|
|
},
|
|
{
|
|
"M₁₂": 6
|
|
},
|
|
{
|
|
"Alt(10)": 12
|
|
},
|
|
{
|
|
"²A₃(9)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 3
|
|
},
|
|
{
|
|
"²A₄(4)": 4
|
|
},
|
|
{
|
|
"Alt(11)": 12
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,40,54}_2",
|
|
"name_utf8": "G²⁴'⁴⁰'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 24,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 59,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"M_{12}": 6
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"C_{3}(2)": 4
|
|
},
|
|
{
|
|
"Alt(10)": 7
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 6
|
|
},
|
|
{
|
|
"A_{3}(3)": 7
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 6
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"M₁₂": 6
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"C₃(2)": 4
|
|
},
|
|
{
|
|
"Alt(10)": 7
|
|
},
|
|
{
|
|
"²A₃(9)": 6
|
|
},
|
|
{
|
|
"A₃(3)": 7
|
|
},
|
|
{
|
|
"²A₄(4)": 1
|
|
},
|
|
{
|
|
"Alt(11)": 6
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,48,48}_0",
|
|
"name_utf8": "G²⁴'⁴⁸'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 39,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 3
|
|
},
|
|
{
|
|
"Alt(8) or A_{2}(4)": 4
|
|
},
|
|
{
|
|
"B_{2}(3)": 3
|
|
},
|
|
{
|
|
"M_{12}": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(25)": 2
|
|
},
|
|
{
|
|
"J_{2}": 2
|
|
},
|
|
{
|
|
"C_{3}(2)": 11
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"A_{2}(7)": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 3
|
|
},
|
|
{
|
|
"B_{2}(5)": 7
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
},
|
|
{
|
|
"A_{4}(2)": 2
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 13
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"HS": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
8,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 3
|
|
},
|
|
{
|
|
"Alt(8) or A₂(4)": 4
|
|
},
|
|
{
|
|
"B₂(3)": 3
|
|
},
|
|
{
|
|
"M₁₂": 1
|
|
},
|
|
{
|
|
"²A₂(25)": 2
|
|
},
|
|
{
|
|
"J₂": 2
|
|
},
|
|
{
|
|
"C₃(2)": 11
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"A₂(7)": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 3
|
|
},
|
|
{
|
|
"B₂(5)": 7
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
},
|
|
{
|
|
"A₄(2)": 2
|
|
},
|
|
{
|
|
"²A₄(4)": 13
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"HS": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,48,48}_1",
|
|
"name_utf8": "G²⁴'⁴⁸'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 39,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 4
|
|
},
|
|
{
|
|
"Alt(9)": 1
|
|
},
|
|
{
|
|
"M_{22}": 1
|
|
},
|
|
{
|
|
"C_{3}(2)": 17
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 8
|
|
},
|
|
{
|
|
"B_{2}(5)": 5
|
|
},
|
|
{
|
|
"A_{3}(3)": 3
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 8
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
9,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 4
|
|
},
|
|
{
|
|
"Alt(9)": 1
|
|
},
|
|
{
|
|
"M₂₂": 1
|
|
},
|
|
{
|
|
"C₃(2)": 17
|
|
},
|
|
{
|
|
"²A₃(9)": 8
|
|
},
|
|
{
|
|
"B₂(5)": 5
|
|
},
|
|
{
|
|
"A₃(3)": 3
|
|
},
|
|
{
|
|
"²A₄(4)": 8
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"HS": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,48,54}_0",
|
|
"name_utf8": "G²⁴'⁴⁸'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 4
|
|
},
|
|
{
|
|
"Alt(9)": 3
|
|
},
|
|
{
|
|
"Alt(10)": 5
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 1
|
|
},
|
|
{
|
|
"A_{3}(3)": 2
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 4
|
|
},
|
|
{
|
|
"Alt(9)": 3
|
|
},
|
|
{
|
|
"Alt(10)": 5
|
|
},
|
|
{
|
|
"²A₃(9)": 1
|
|
},
|
|
{
|
|
"A₃(3)": 2
|
|
},
|
|
{
|
|
"²A₄(4)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 4
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,48,54}_2",
|
|
"name_utf8": "G²⁴'⁴⁸'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 24,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 3
|
|
},
|
|
{
|
|
"C_{3}(2)": 3
|
|
},
|
|
{
|
|
"Alt(10)": 5
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 5
|
|
},
|
|
{
|
|
"A_{3}(3)": 10
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 12
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 3
|
|
},
|
|
{
|
|
"C₃(2)": 3
|
|
},
|
|
{
|
|
"Alt(10)": 5
|
|
},
|
|
{
|
|
"²A₃(9)": 5
|
|
},
|
|
{
|
|
"A₃(3)": 10
|
|
},
|
|
{
|
|
"²A₄(4)": 12
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,54,54}_0",
|
|
"name_utf8": "G²⁴'⁵⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 63,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(9)": 6
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 4
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 8
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(9)": 6
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 4
|
|
},
|
|
{
|
|
"²A₄(4)": 8
|
|
},
|
|
{
|
|
"Alt(11)": 2
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,54,54}_2",
|
|
"name_utf8": "G²⁴'⁵⁴'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 24,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 63,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 9
|
|
},
|
|
{
|
|
"C_{3}(2)": 6
|
|
},
|
|
{
|
|
"Alt(10)": 22
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 8
|
|
},
|
|
{
|
|
"A_{3}(3)": 26
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 12
|
|
},
|
|
{
|
|
"Alt(11)": 12
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 9
|
|
},
|
|
{
|
|
"C₃(2)": 6
|
|
},
|
|
{
|
|
"Alt(10)": 22
|
|
},
|
|
{
|
|
"²A₃(9)": 8
|
|
},
|
|
{
|
|
"A₃(3)": 26
|
|
},
|
|
{
|
|
"²A₄(4)": 12
|
|
},
|
|
{
|
|
"Alt(11)": 12
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{24,54,54}_8",
|
|
"name_utf8": "G²⁴'⁵⁴'⁵⁴₈",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 63,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 4
|
|
},
|
|
{
|
|
"Alt(9)": 14
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 9
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 4
|
|
},
|
|
{
|
|
"Alt(9)": 14
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"²A₄(4)": 9
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,40,40}_0",
|
|
"name_utf8": "G²⁶'⁴⁰'⁴⁰₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"A_{3}(3)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
20,
|
|
21,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₃(3)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,40,48}_0",
|
|
"name_utf8": "G²⁶'⁴⁰'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"{}^2F_4(2)'": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"²F₄(2)'": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,40,54}_0",
|
|
"name_utf8": "G²⁶'⁴⁰'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 59,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{3}(3)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₃(3)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,40,54}_2",
|
|
"name_utf8": "G²⁶'⁴⁰'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 26,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 59,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
15
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": []
|
|
},
|
|
{
|
|
"name": "G^{26,48,48}_0",
|
|
"name_utf8": "G²⁶'⁴⁸'⁴⁸₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 39,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"G_{2}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
14,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"G₂(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,48,48}_1",
|
|
"name_utf8": "G²⁶'⁴⁸'⁴⁸₁",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 39,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"G_{2}(3)": 4
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [
|
|
"L₂(13)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"G₂(3)": 4
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,48,54}_0",
|
|
"name_utf8": "G²⁶'⁴⁸'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"G_{2}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"G₂(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,48,54}_2",
|
|
"name_utf8": "G²⁶'⁴⁸'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 26,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"G_{2}(3)": 1
|
|
},
|
|
{
|
|
"A_{3}(3)": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
26,
|
|
27,
|
|
28,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"G₂(3)": 1
|
|
},
|
|
{
|
|
"A₃(3)": 1
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,54,54}_0",
|
|
"name_utf8": "G²⁶'⁵⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 63,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
26,
|
|
27,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,54,54}_2",
|
|
"name_utf8": "G²⁶'⁵⁴'⁵⁴₂",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 26,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 63,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 20
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
16,
|
|
19,
|
|
22,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 20
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{26,54,54}_8",
|
|
"name_utf8": "G²⁶'⁵⁴'⁵⁴₈",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 63,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 6
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 30,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 6
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{40,40,40}_0",
|
|
"name_utf8": "G⁴⁰'⁴⁰'⁴⁰₀",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 40,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(inf^4)",
|
|
"L_2(inf^4)",
|
|
"L_2(inf^4)",
|
|
"L_2(inf^4)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"B_{2}(3)": 18
|
|
},
|
|
{
|
|
"M_{12}": 7
|
|
},
|
|
{
|
|
"{}^2A_{2}(25)": 2
|
|
},
|
|
{
|
|
"J_{1}": 4
|
|
},
|
|
{
|
|
"A_{2}(5)": 2
|
|
},
|
|
{
|
|
"J_{2}": 8
|
|
},
|
|
{
|
|
"C_{2}(4)": 21
|
|
},
|
|
{
|
|
"Alt(10)": 15
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 12
|
|
},
|
|
{
|
|
"B_{2}(5)": 90
|
|
},
|
|
{
|
|
"A_{3}(3)": 7
|
|
},
|
|
{
|
|
"HS": 12
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
6,
|
|
7,
|
|
10,
|
|
12,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [
|
|
"L₂(inf⁴)",
|
|
"L₂(inf⁴)",
|
|
"L₂(inf⁴)",
|
|
"L₂(inf⁴)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 1
|
|
},
|
|
{
|
|
"B₂(3)": 18
|
|
},
|
|
{
|
|
"M₁₂": 7
|
|
},
|
|
{
|
|
"²A₂(25)": 2
|
|
},
|
|
{
|
|
"J₁": 4
|
|
},
|
|
{
|
|
"A₂(5)": 2
|
|
},
|
|
{
|
|
"J₂": 8
|
|
},
|
|
{
|
|
"C₂(4)": 21
|
|
},
|
|
{
|
|
"Alt(10)": 15
|
|
},
|
|
{
|
|
"²A₃(9)": 12
|
|
},
|
|
{
|
|
"B₂(5)": 90
|
|
},
|
|
{
|
|
"A₃(3)": 7
|
|
},
|
|
{
|
|
"HS": 12
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{40,40,48}_0",
|
|
"name_utf8": "G⁴⁰'⁴⁰'⁴⁸₀",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 40,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(inf^4)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"M_{11}": 4
|
|
},
|
|
{
|
|
"B_{2}(3)": 8
|
|
},
|
|
{
|
|
"{}^2A_{2}(25)": 1
|
|
},
|
|
{
|
|
"M_{22}": 2
|
|
},
|
|
{
|
|
"J_{2}": 4
|
|
},
|
|
{
|
|
"C_{2}(4)": 2
|
|
},
|
|
{
|
|
"C_{3}(2)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 4
|
|
},
|
|
{
|
|
"B_{2}(5)": 16
|
|
},
|
|
{
|
|
"A_{3}(3)": 2
|
|
},
|
|
{
|
|
"A_{4}(2)": 4
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 10
|
|
},
|
|
{
|
|
"Alt(11)": 7
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6,
|
|
7,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [
|
|
"L₂(inf⁴)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"M₁₁": 4
|
|
},
|
|
{
|
|
"B₂(3)": 8
|
|
},
|
|
{
|
|
"²A₂(25)": 1
|
|
},
|
|
{
|
|
"M₂₂": 2
|
|
},
|
|
{
|
|
"J₂": 4
|
|
},
|
|
{
|
|
"C₂(4)": 2
|
|
},
|
|
{
|
|
"C₃(2)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"²A₃(9)": 4
|
|
},
|
|
{
|
|
"B₂(5)": 16
|
|
},
|
|
{
|
|
"A₃(3)": 2
|
|
},
|
|
{
|
|
"A₄(2)": 4
|
|
},
|
|
{
|
|
"²A₄(4)": 10
|
|
},
|
|
{
|
|
"Alt(11)": 7
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{40,40,54}_0",
|
|
"name_utf8": "G⁴⁰'⁴⁰'⁵⁴₀",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 40,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 61,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 5
|
|
},
|
|
{
|
|
"M_{12}": 2
|
|
},
|
|
{
|
|
"Alt(10)": 8
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 15
|
|
},
|
|
{
|
|
"A_{3}(3)": 4
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 7
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
7,
|
|
10,
|
|
15,
|
|
16,
|
|
17,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 5
|
|
},
|
|
{
|
|
"M₁₂": 2
|
|
},
|
|
{
|
|
"Alt(10)": 8
|
|
},
|
|
{
|
|
"²A₃(9)": 15
|
|
},
|
|
{
|
|
"A₃(3)": 4
|
|
},
|
|
{
|
|
"²A₄(4)": 7
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{40,48,48}_0",
|
|
"name_utf8": "G⁴⁰'⁴⁸'⁴⁸₀",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 40,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)",
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"M_{11}": 1
|
|
},
|
|
{
|
|
"B_{2}(3)": 18
|
|
},
|
|
{
|
|
"M_{22}": 2
|
|
},
|
|
{
|
|
"J_{2}": 6
|
|
},
|
|
{
|
|
"C_{2}(4)": 4
|
|
},
|
|
{
|
|
"C_{3}(2)": 6
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 10
|
|
},
|
|
{
|
|
"B_{2}(5)": 20
|
|
},
|
|
{
|
|
"A_{3}(3)": 15
|
|
},
|
|
{
|
|
"A_{4}(2)": 8
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 15
|
|
},
|
|
{
|
|
"Alt(11)": 9
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
7,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)",
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 2
|
|
},
|
|
{
|
|
"M₁₁": 1
|
|
},
|
|
{
|
|
"B₂(3)": 18
|
|
},
|
|
{
|
|
"M₂₂": 2
|
|
},
|
|
{
|
|
"J₂": 6
|
|
},
|
|
{
|
|
"C₂(4)": 4
|
|
},
|
|
{
|
|
"C₃(2)": 6
|
|
},
|
|
{
|
|
"²A₃(9)": 10
|
|
},
|
|
{
|
|
"B₂(5)": 20
|
|
},
|
|
{
|
|
"A₃(3)": 15
|
|
},
|
|
{
|
|
"A₄(2)": 8
|
|
},
|
|
{
|
|
"²A₄(4)": 15
|
|
},
|
|
{
|
|
"Alt(11)": 9
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{40,48,54}_0",
|
|
"name_utf8": "G⁴⁰'⁴⁸'⁵⁴₀",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 40,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 11
|
|
},
|
|
{
|
|
"M_{12}": 7
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"C_{3}(2)": 4
|
|
},
|
|
{
|
|
"Alt(10)": 7
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 14
|
|
},
|
|
{
|
|
"A_{3}(3)": 16
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 7
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 11
|
|
},
|
|
{
|
|
"M₁₂": 7
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"C₃(2)": 4
|
|
},
|
|
{
|
|
"Alt(10)": 7
|
|
},
|
|
{
|
|
"²A₃(9)": 14
|
|
},
|
|
{
|
|
"A₃(3)": 16
|
|
},
|
|
{
|
|
"²A₄(4)": 3
|
|
},
|
|
{
|
|
"Alt(11)": 7
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{40,48,54}_2",
|
|
"name_utf8": "G⁴⁰'⁴⁸'⁵⁴₂",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 40,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 17
|
|
},
|
|
{
|
|
"M_{12}": 7
|
|
},
|
|
{
|
|
"C_{3}(2)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 12
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 20
|
|
},
|
|
{
|
|
"A_{3}(3)": 22
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 24
|
|
},
|
|
{
|
|
"Alt(11)": 15
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
10,
|
|
11,
|
|
12,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [
|
|
"L₂(3²)"
|
|
],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 17
|
|
},
|
|
{
|
|
"M₁₂": 7
|
|
},
|
|
{
|
|
"C₃(2)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 12
|
|
},
|
|
{
|
|
"²A₃(9)": 20
|
|
},
|
|
{
|
|
"A₃(3)": 22
|
|
},
|
|
{
|
|
"²A₄(4)": 24
|
|
},
|
|
{
|
|
"Alt(11)": 15
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{40,54,54}_0",
|
|
"name_utf8": "G⁴⁰'⁵⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 40,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 65,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 8
|
|
},
|
|
{
|
|
"M_{12}": 2
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 9
|
|
},
|
|
{
|
|
"A_{3}(3)": 17
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 7
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
9,
|
|
10,
|
|
12,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 8
|
|
},
|
|
{
|
|
"M₁₂": 2
|
|
},
|
|
{
|
|
"Alt(9)": 2
|
|
},
|
|
{
|
|
"Alt(10)": 4
|
|
},
|
|
{
|
|
"²A₃(9)": 9
|
|
},
|
|
{
|
|
"A₃(3)": 17
|
|
},
|
|
{
|
|
"²A₄(4)": 7
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{40,54,54}_2",
|
|
"name_utf8": "G⁴⁰'⁵⁴'⁵⁴₂",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 40,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 65,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 12
|
|
},
|
|
{
|
|
"M_{12}": 2
|
|
},
|
|
{
|
|
"C_{3}(2)": 4
|
|
},
|
|
{
|
|
"Alt(10)": 16
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 14
|
|
},
|
|
{
|
|
"A_{3}(3)": 26
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 40
|
|
},
|
|
{
|
|
"Alt(11)": 10
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 12
|
|
},
|
|
{
|
|
"M₁₂": 2
|
|
},
|
|
{
|
|
"C₃(2)": 4
|
|
},
|
|
{
|
|
"Alt(10)": 16
|
|
},
|
|
{
|
|
"²A₃(9)": 14
|
|
},
|
|
{
|
|
"A₃(3)": 26
|
|
},
|
|
{
|
|
"²A₄(4)": 40
|
|
},
|
|
{
|
|
"Alt(11)": 10
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{40,54,54}_8",
|
|
"name_utf8": "G⁴⁰'⁵⁴'⁵⁴₈",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 40,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 65,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"B_{2}(3)": 8
|
|
},
|
|
{
|
|
"M_{12}": 2
|
|
},
|
|
{
|
|
"Alt(9)": 12
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 12
|
|
},
|
|
{
|
|
"A_{3}(3)": 8
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 16
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
9,
|
|
12,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"B₂(3)": 8
|
|
},
|
|
{
|
|
"M₁₂": 2
|
|
},
|
|
{
|
|
"Alt(9)": 12
|
|
},
|
|
{
|
|
"²A₃(9)": 12
|
|
},
|
|
{
|
|
"A₃(3)": 8
|
|
},
|
|
{
|
|
"²A₄(4)": 16
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{48,48,48}_0",
|
|
"name_utf8": "G⁴⁸'⁴⁸'⁴⁸₀",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b^-1 * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 48,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 33,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(9)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 27
|
|
},
|
|
{
|
|
"Alt(9)": 3
|
|
},
|
|
{
|
|
"M_{22}": 1
|
|
},
|
|
{
|
|
"C_{3}(2)": 39
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 21
|
|
},
|
|
{
|
|
"B_{2}(5)": 9
|
|
},
|
|
{
|
|
"A_{3}(3)": 33
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 60
|
|
},
|
|
{
|
|
"Alt(11)": 3
|
|
},
|
|
{
|
|
"{}^2A_{2}(81)": 2
|
|
},
|
|
{
|
|
"HS": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
9,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 1
|
|
},
|
|
{
|
|
"²A₂(9)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 27
|
|
},
|
|
{
|
|
"Alt(9)": 3
|
|
},
|
|
{
|
|
"M₂₂": 1
|
|
},
|
|
{
|
|
"C₃(2)": 39
|
|
},
|
|
{
|
|
"²A₃(9)": 21
|
|
},
|
|
{
|
|
"B₂(5)": 9
|
|
},
|
|
{
|
|
"A₃(3)": 33
|
|
},
|
|
{
|
|
"²A₄(4)": 60
|
|
},
|
|
{
|
|
"Alt(11)": 3
|
|
},
|
|
{
|
|
"²A₂(81)": 2
|
|
},
|
|
{
|
|
"HS": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{48,48,48}_1",
|
|
"name_utf8": "G⁴⁸'⁴⁸'⁴⁸₁",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b^-1 * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 48,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 33,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"Alt(7)": 3
|
|
},
|
|
{
|
|
"{}^2A_{2}(9)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A_{2}(4)": 6
|
|
},
|
|
{
|
|
"B_{2}(3)": 24
|
|
},
|
|
{
|
|
"M_{12}": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(25)": 3
|
|
},
|
|
{
|
|
"J_{2}": 4
|
|
},
|
|
{
|
|
"C_{3}(2)": 27
|
|
},
|
|
{
|
|
"Alt(10)": 3
|
|
},
|
|
{
|
|
"A_{2}(7)": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 15
|
|
},
|
|
{
|
|
"B_{2}(5)": 19
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 30
|
|
},
|
|
{
|
|
"A_{4}(2)": 4
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 63
|
|
},
|
|
{
|
|
"Alt(11)": 3
|
|
},
|
|
{
|
|
"A_{2}(9)": 1
|
|
},
|
|
{
|
|
"{}^2A_{2}(81)": 2
|
|
},
|
|
{
|
|
"HS": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
8,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"Alt(7)": 3
|
|
},
|
|
{
|
|
"²A₂(9)": 1
|
|
},
|
|
{
|
|
"Alt(8) or A₂(4)": 6
|
|
},
|
|
{
|
|
"B₂(3)": 24
|
|
},
|
|
{
|
|
"M₁₂": 1
|
|
},
|
|
{
|
|
"²A₂(25)": 3
|
|
},
|
|
{
|
|
"J₂": 4
|
|
},
|
|
{
|
|
"C₃(2)": 27
|
|
},
|
|
{
|
|
"Alt(10)": 3
|
|
},
|
|
{
|
|
"A₂(7)": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 15
|
|
},
|
|
{
|
|
"B₂(5)": 19
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 30
|
|
},
|
|
{
|
|
"A₄(2)": 4
|
|
},
|
|
{
|
|
"²A₄(4)": 63
|
|
},
|
|
{
|
|
"Alt(11)": 3
|
|
},
|
|
{
|
|
"A₂(9)": 1
|
|
},
|
|
{
|
|
"²A₂(81)": 2
|
|
},
|
|
{
|
|
"HS": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{48,48,54}_0",
|
|
"name_utf8": "G⁴⁸'⁴⁸'⁵⁴₀",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b^-1 * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 48,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 19
|
|
},
|
|
{
|
|
"Alt(9)": 3
|
|
},
|
|
{
|
|
"C_{3}(2)": 3
|
|
},
|
|
{
|
|
"Alt(10)": 6
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 17
|
|
},
|
|
{
|
|
"A_{3}(3)": 28
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 40
|
|
},
|
|
{
|
|
"Alt(11)": 6
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 19
|
|
},
|
|
{
|
|
"Alt(9)": 3
|
|
},
|
|
{
|
|
"C₃(2)": 3
|
|
},
|
|
{
|
|
"Alt(10)": 6
|
|
},
|
|
{
|
|
"²A₃(9)": 17
|
|
},
|
|
{
|
|
"A₃(3)": 28
|
|
},
|
|
{
|
|
"²A₄(4)": 40
|
|
},
|
|
{
|
|
"Alt(11)": 6
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{48,54,54}_0",
|
|
"name_utf8": "G⁴⁸'⁵⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b^-1 * a^-1 * b^-1 * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 48,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 8
|
|
},
|
|
{
|
|
"Alt(9)": 6
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 9
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 11
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 25
|
|
},
|
|
{
|
|
"Alt(11)": 4
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 8
|
|
},
|
|
{
|
|
"Alt(9)": 6
|
|
},
|
|
{
|
|
"Alt(10)": 2
|
|
},
|
|
{
|
|
"²A₃(9)": 9
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 11
|
|
},
|
|
{
|
|
"²A₄(4)": 25
|
|
},
|
|
{
|
|
"Alt(11)": 4
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{48,54,54}_2",
|
|
"name_utf8": "G⁴⁸'⁵⁴'⁵⁴₂",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b^-1 * a^-1 * b^-1 * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 48,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 10
|
|
},
|
|
{
|
|
"Alt(9)": 9
|
|
},
|
|
{
|
|
"C_{3}(2)": 6
|
|
},
|
|
{
|
|
"Alt(10)": 22
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 14
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 36
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 28
|
|
},
|
|
{
|
|
"Alt(11)": 20
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 10
|
|
},
|
|
{
|
|
"Alt(9)": 9
|
|
},
|
|
{
|
|
"C₃(2)": 6
|
|
},
|
|
{
|
|
"Alt(10)": 22
|
|
},
|
|
{
|
|
"²A₃(9)": 14
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 36
|
|
},
|
|
{
|
|
"²A₄(4)": 28
|
|
},
|
|
{
|
|
"Alt(11)": 20
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{48,54,54}_8",
|
|
"name_utf8": "G⁴⁸'⁵⁴'⁵⁴₈",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b^-1 * a^-1 * b^-1 * a^-1",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 48,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 18
|
|
},
|
|
{
|
|
"Alt(9)": 14
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 15
|
|
},
|
|
{
|
|
"{}^2A_{2}(64)": 2
|
|
},
|
|
{
|
|
"A_{3}(3)": 19
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 52
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 18
|
|
},
|
|
{
|
|
"Alt(9)": 14
|
|
},
|
|
{
|
|
"Alt(10)": 1
|
|
},
|
|
{
|
|
"²A₃(9)": 15
|
|
},
|
|
{
|
|
"²A₂(64)": 2
|
|
},
|
|
{
|
|
"A₃(3)": 19
|
|
},
|
|
{
|
|
"²A₄(4)": 52
|
|
},
|
|
{
|
|
"Alt(11)": 1
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{54,54,54}_0",
|
|
"name_utf8": "G⁵⁴'⁵⁴'⁵⁴₀",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b^-1 * a * b * a^-1",
|
|
"b * a * b^-1 * a * b * a * b^-1 * a * b * a * b^-1 * a",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 54,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 69,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 6
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 10
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
19,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"Alt(9)": 6
|
|
},
|
|
{
|
|
"²A₄(4)": 10
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
},
|
|
{
|
|
"name": "G^{54,54,54}_2",
|
|
"name_utf8": "G⁵⁴'⁵⁴'⁵⁴₂",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b^-1 * a * b * a^-1",
|
|
"b * a * b^-1 * a * b * a * b^-1 * a * b * a * b^-1 * a",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 54,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 69,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [],
|
|
"quotients": [
|
|
{
|
|
"A_{2}(3)": 2
|
|
},
|
|
{
|
|
"B_{2}(3)": 8
|
|
},
|
|
{
|
|
"Alt(9)": 24
|
|
},
|
|
{
|
|
"{}^2A_{3}(9)": 9
|
|
},
|
|
{
|
|
"A_{3}(3)": 13
|
|
},
|
|
{
|
|
"{}^2A_{4}(4)": 41
|
|
},
|
|
{
|
|
"A_{2}(9)": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
12,
|
|
15,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40,
|
|
"L2_quotients_utf8": [],
|
|
"quotients_utf8": [
|
|
{
|
|
"A₂(3)": 2
|
|
},
|
|
{
|
|
"B₂(3)": 8
|
|
},
|
|
{
|
|
"Alt(9)": 24
|
|
},
|
|
{
|
|
"²A₃(9)": 9
|
|
},
|
|
{
|
|
"A₃(3)": 13
|
|
},
|
|
{
|
|
"²A₄(4)": 41
|
|
},
|
|
{
|
|
"A₂(9)": 3
|
|
}
|
|
]
|
|
}
|
|
]
|