mirror of
https://github.com/kalmarek/SmallHyperbolic
synced 2025-01-01 03:55:29 +01:00
136 lines
5.2 KiB
Plaintext
136 lines
5.2 KiB
Plaintext
// Magma Functions related to the article
|
|
//
|
|
// Hyperbolic generalized triangle groups, property (T) and finite simple quotients
|
|
// by Pierre-Emmanuel Caprace, Marston Conder, Marek Kaluba, Stefan Witzel
|
|
//
|
|
// The functions and procedures in this file were written by Pierre-Emmanuel Caprace and Stefan Witzel
|
|
//
|
|
// The file is working magma code except for the two lines definint hyp_words_a and hyp_words_c that need to be replaced using hyperbolic_words.py
|
|
// It does not contain (all) the code that was used to create the tables but it is suited to reconstruct the tables.
|
|
|
|
SetColumns(0);
|
|
SetAutoColumns(false);
|
|
SetVerbose("KBMAG",1);
|
|
|
|
max_quotient_order:=5*10^7;
|
|
|
|
// Procedure testing whether a trivalent generalized triangle group of half girth type (3,3,3) ("type A") or half girth type (2,4,4) ("type C") contains a copy of Z^2 generated by short elements.
|
|
//
|
|
// The arguments are an automatic group representing a generalized triangle group and the list hyp_words_a or hyp_words_c depening on type (these lists are the only part specific to trivalent triangle groups).
|
|
//
|
|
// The prints generators of a copy of Z^2 f one is found (so the group is not hyperbolic). If none is found the group may or may not be hyperbolic.
|
|
|
|
find_flat := procedure(GA, ~hyp_words)
|
|
printf "Commuting pair: ";
|
|
for s in [1..#hyp_words] do
|
|
for i in [1..s] do
|
|
for x in hyp_words[i] do
|
|
for y in hyp_words[i] do
|
|
// Do x and y commute?
|
|
if (x, y) ne GA!1 then
|
|
continue;
|
|
end if;
|
|
|
|
// If so, do they span a cyclic group?
|
|
num := GreatestCommonDivisor(#x,#y);
|
|
ex := Round(#y/num);
|
|
ey := Round(#x/num);
|
|
if x^ex eq y^ey or x^ex eq y^(-ey) then
|
|
continue;
|
|
end if;
|
|
|
|
// If not they span a copy of Z^2
|
|
printf "%o, %o;\t", x, y;
|
|
return;
|
|
end for;
|
|
end for;
|
|
end for;
|
|
end for;
|
|
printf "\n";
|
|
end procedure;
|
|
|
|
// Auxiliary function determining the name of a simple quotient
|
|
identify := function(Qs)
|
|
succ, res := SimpleGroupName(Image(Qs[1]));
|
|
if succ then
|
|
return [*res,Order(Image(Qs[1])), #Qs*];
|
|
else
|
|
return [* [*<0,0,0>*], Order(Image(Qs[1])),#Qs*];
|
|
end if;
|
|
end function;
|
|
|
|
// Procedure collecting information around the hyperbolicity of a generalized triangle group of half girth type (3,3,3) (type A) or (2,4,4) (type C).
|
|
//
|
|
// Arguments are a generalized triangle group (as a finitely presented group) and "A" or "C" describing the type.
|
|
//
|
|
// It will first try to find an automatic structure and prints whether it has found one (this should never fail).
|
|
// Based on the automatic struture, it tries to prove the group hyperbolic and prints whether it manged.
|
|
// If the group could not be verified to be hyperbolic, the procedure tries to find a copy of Z^2 and print, whether it has found one.
|
|
//
|
|
// Of course, if a group is expected to contain Z^2, it is reasonable to call find_flat before calling IsHyperbolic.
|
|
|
|
hyperbolic := procedure(G, type)
|
|
isa, GA := IsAutomaticGroup(G);
|
|
printf "automatic: %o\n", isa;
|
|
if not isa then
|
|
return;
|
|
end if;
|
|
ish, GH := IsHyperbolic(GA: MaxTries := 20);
|
|
printf "hyperbolic: %o\n", ish;
|
|
if ish then
|
|
return;
|
|
end if;
|
|
a := Generators(GA)[1];
|
|
b := Generators(GA)[2];
|
|
c := Generators(GA)[3];
|
|
if type eq "A" then
|
|
hyp_words_a := [ False ];
|
|
find_flat(GA, ~hyp_words_a);
|
|
elif type eq "C" then
|
|
hyp_words_c := [ False ];
|
|
find_flat(GA, ~hyp_words_c);
|
|
end if;
|
|
end procedure;
|
|
|
|
// Procedure collecting information abound finite simple quotients of a finitely presented group
|
|
//
|
|
// Arguments are a finitely presented group and a bound on the order of quotients (such as max_quotient_order)
|
|
//
|
|
// Prints the abelianization, the L2 quotients, and the finite simple quotients that are not L2 quotients up to the given order.
|
|
|
|
quotients := procedure(G,n)
|
|
Q, mor := AbelianQuotient(G);;
|
|
printf "rk(H_1): %o\n", #Generators(AbelianQuotient(G));
|
|
printf "l2-quotients: %o\n", L2Quotients(G);
|
|
printf "quotients: %o, %o\n", [identify(Qs) : Qs in SimpleQuotients(G,n:Family:="notPSL2",Limit:=0)], n;
|
|
end procedure;
|
|
|
|
|
|
// Function testing whether a generalized triangle group given in triangular presentation is virtually torsion free (VTF)
|
|
//
|
|
// Returns "true" if group is certified to be virtually torsion-free. The outpue "false" is inconclusive.
|
|
//
|
|
// The input is a quadruple consisting of the group presentation, followed by the triple of the orders of the vertex links, respectively corresponding to <a, b>, <b, c>, <c, a>
|
|
|
|
VTF:=function(g, n1, n2, n3)
|
|
o1:=n1*3/2; // Order group vx group generated by a, b
|
|
o2:=n2*3/2; // Order group vx group generated by b, c
|
|
o3:=n3*3/2; // Order group vx group generated by c, a
|
|
|
|
// Test whether vertex groups inject in simple quotients
|
|
t:=false;
|
|
quot:=SimpleQuotientProcess(g, 6, 10^3, 1, 5*10^7:Limit:=1);
|
|
|
|
while not t and not IsEmptySimpleQuotientProcess(quot) do
|
|
f:=SimpleEpimorphisms(quot)[1];
|
|
Im:=Parent(f(g.1));
|
|
o_im_1:=#sub<Im|f(g.1), f(g.2)>;
|
|
o_im_2:=#sub<Im|f(g.2), f(g.3)>;
|
|
o_im_3:=#sub<Im|f(g.3), f(g.1)>;
|
|
t:=o1 eq o_im_1 and o2 eq o_im_2 and o3 eq o_im_3;
|
|
NextSimpleQuotient(~quot);
|
|
end while;
|
|
|
|
return t;
|
|
end function;
|