mirror of
https://github.com/kalmarek/SmallHyperbolic
synced 2024-11-09 04:05:27 +01:00
14790 lines
340 KiB
JSON
14790 lines
340 KiB
JSON
[
|
|
{
|
|
"name": "$G^{6,40,40}_0",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"(a*c^-1*a*c)^2",
|
|
"(a^-1*c^-1*a*c^-1)^2"
|
|
],
|
|
"order1": 6,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * c * b * c * a^-1 * c * b * c^-1",
|
|
"b * c * a^-1 * c * b * c * a^-1 * c^-1"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{6,40,48}_0",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"(a*c)^2*(a^-1*c^-1)^2"
|
|
],
|
|
"order1": 6,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * c * a * c^-1 * b * c^-1 * a^-1 * c^-1",
|
|
"a^-1 * c * b * c * a * c * b * c^-1"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 3
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{6,40,54}_0",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a * c^-1 * b^-1 * c^-1 * a * c * b * c",
|
|
"b^-1 * c * a^-1 * c^-1 * b * c^-1 * a * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 4
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
10,
|
|
15,
|
|
20,
|
|
25
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{6,40,54}_2",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"c*a*c^-1*a^-1*c^-1*a*c*a^-1",
|
|
"(c*a*c^-1*a)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * c * a * c^-1 * b * c * a^-1 * c",
|
|
"a * c^-1 * b^-1 * c * a^-1 * c * b^-1 * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
9
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{6,48,48}_0",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"(a*c)^2*(a^-1*c^-1)^2"
|
|
],
|
|
"order1": 6,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 29,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * c^-1 * b * c",
|
|
"b * c * a * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{6,48,54}_0",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * c * a * c^-1 * b * c * a * c^-1",
|
|
"a^-1 * c * b * c * a^-1 * c^-1 * b^-1 * c^-1"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
14,
|
|
15,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{6,48,54}_2",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"c*a*c^-1*a^-1*c^-1*a*c*a^-1",
|
|
"(c*a*c^-1*a)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 41,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * c * a * c^-1 * b * c * a^-1 * c",
|
|
"a * c^-1 * b^-1 * c^-1 * a^-1 * c^-1 * b^-1 * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{6,54,54}_0",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"c*b*c^-1*b^-1*c^-1*b*c*b^-1",
|
|
"(c*b*c^-1*b)^3",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a * c^-1 * b^-1 * c^-1 * a * c * b * c",
|
|
"b^-1 * c^-1 * a^-1 * c * b * c^-1 * a * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{6,54,54}_2",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"c*b*c^-1*b^-1*c^-1*b*c*b^-1",
|
|
"(c*b*c^-1*b)^3",
|
|
"c*a*c^-1*a^-1*c^-1*a*c*a^-1",
|
|
"(c*a*c^-1*a)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 53,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * c * b^-1 * c * a * c^-1 * b * c",
|
|
"b^-1 * c * a^-1 * c * b * c^-1 * a * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
12,
|
|
15,
|
|
18,
|
|
21,
|
|
24,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{6,54,54}_8",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b^-1*a^-1",
|
|
"b*c*b^-1*c^-1*b^-1*c*b*c^-1",
|
|
"(b*c*b^-1*c)^3",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 6,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 53,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * c^-1 * b * c",
|
|
"b^-1 * c^-1 * a * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
12,
|
|
18,
|
|
21,
|
|
24,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{8,40,40}_0",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"(a*c^-1*a*c)^2",
|
|
"(a^-1*c^-1*a*c^-1)^2"
|
|
],
|
|
"order1": 8,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * c^-1 * b * c",
|
|
"b * c^-1 * a^-1 * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(\\infty^4)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 1
|
|
},
|
|
{
|
|
"$C_{2}(4)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 2
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 5
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6,
|
|
10,
|
|
11,
|
|
15,
|
|
20,
|
|
21,
|
|
25,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{8,40,48}_0",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"(a*c)^2*(a^-1*c^-1)^2"
|
|
],
|
|
"order1": 8,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(5)$": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{8,40,54}_0",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
6
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{8,40,54}_2",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b^-1*c*b)^2",
|
|
"(c^-1*b^-1*c*b^-1)^2",
|
|
"c*a*c^-1*a^-1*c^-1*a*c*a^-1",
|
|
"(c*a*c^-1*a)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * c * a * c^-1 * b * c^-1 * a * c",
|
|
"a^-1 * c * b^-1 * c * a^-1 * c * b^-1 * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 3
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
6,
|
|
10,
|
|
12,
|
|
15,
|
|
16,
|
|
21,
|
|
22,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{8,48,48}_0",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"(a*c)^2*(a^-1*c^-1)^2"
|
|
],
|
|
"order1": 8,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 3
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
11,
|
|
19,
|
|
25,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{8,48,48}_1",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"(a*c^-1)^2*(a^-1*c)^2"
|
|
],
|
|
"order1": 8,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 29,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * c^-1 * a^-1 * c * b * c * a * c^-1",
|
|
"a * c^-1 * b * c * a^-1 * c * b^-1 * c^-1"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 1
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
11,
|
|
15,
|
|
19,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{8,48,54}_0",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{8,48,54}_2",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"(c*b)^2*(c^-1*b^-1)^2",
|
|
"c*a*c^-1*a^-1*c^-1*a*c*a^-1",
|
|
"(c*a*c^-1*a)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
13,
|
|
20,
|
|
26,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{8,54,54}_0",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"c*b*c^-1*b^-1*c^-1*b*c*b^-1",
|
|
"(c*b*c^-1*b)^3",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{8,54,54}_2",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"c*b*c^-1*b^-1*c^-1*b*c*b^-1",
|
|
"(c*b*c^-1*b)^3",
|
|
"c*a*c^-1*a^-1*c^-1*a*c*a^-1",
|
|
"(c*a*c^-1*a)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 53,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * c^-1 * b^-1 * c",
|
|
"b * c * a * c"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 12
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 5
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{8,54,54}_8",
|
|
"half_girth_type": [
|
|
2,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b*a*b*a",
|
|
"b*c*b^-1*c^-1*b^-1*c*b*c^-1",
|
|
"(b*c*b^-1*c)^3",
|
|
"a*c*a^-1*c^-1*a^-1*c*a*c^-1",
|
|
"(a*c*a^-1*c)^3"
|
|
],
|
|
"order1": 8,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 53,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a * c * b^-1 * c^-1 * a^-1 * c * b * c^-1",
|
|
"b^-1 * c * a * c^-1 * b * c * a^-1 * c^-1"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
18,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 28
|
|
},
|
|
{
|
|
"name": "$G^{14,14,14}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c * a^-1 * c^-1 * a * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 14,
|
|
"index": 0,
|
|
"presentation_length": 27,
|
|
"hyperbolic": null,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": true,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"${}^2A_{2}(9)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(25)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,14}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c^-1 * a^-1 * c * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 14,
|
|
"index": 1,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a * c * a * b^-1 * a",
|
|
"a^-1 * b * c * a * b^-1 * a * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": true,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,14}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"c * a * c^-1 * a^-1 * c * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 14,
|
|
"index": 2,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": true,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,14}_6",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 14,
|
|
"index": 6,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a",
|
|
"b^-1 * a^-1 * c * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": true,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(8)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,16}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c * a * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 16,
|
|
"index": 0,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a",
|
|
"a^-1 * b^-1 * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
8
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,16}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c^-1 * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 16,
|
|
"index": 1,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a * c^-1 * a^-1 * b^-1 * a^-1",
|
|
"b^-1 * a * c * a^-1 * b^-1 * a * c * a^-1"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,16}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"a * c * a * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 16,
|
|
"index": 4,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a * c^-1 * a^-1 * b^-1 * a",
|
|
"a^-1 * b * c^-1 * a * b * a * c * b^-1"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,16}_5",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"a * c^-1 * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 16,
|
|
"index": 5,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a * c^-1 * b * a * c^-1 * b * a^-1",
|
|
"b * a^-1 * c^-1 * a * b^-1 * c^-1 * a * b * c * a^-1"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,18}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 18,
|
|
"index": 0,
|
|
"presentation_length": 33,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"${}^2A_{2}(9)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,18}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 18,
|
|
"index": 4,
|
|
"presentation_length": 33,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,24}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,24}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 24,
|
|
"index": 1,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(25)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,24}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 24,
|
|
"index": 4,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{M}_{22}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
8
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,24}_5",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 24,
|
|
"index": 5,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a",
|
|
"c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,26}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(9)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
14
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,26}_3",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,26}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 26,
|
|
"index": 4,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,26}_5",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 26,
|
|
"index": 5,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a",
|
|
"c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,26}_7",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 26,
|
|
"index": 7,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a",
|
|
"c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,16,16}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 16,
|
|
"index": 0,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * a * c * b * a^-1 * c^-1",
|
|
"b^-1 * c * a * b^-1 * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,16,16}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 16,
|
|
"index": 1,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * a^-1 * b * a * c^-1 * a^-1 * b^-1 * a * c^-1 * b^-1",
|
|
"c * a^-1 * b * a * c * a^-1 * b^-1 * a * c^-1 * a^-1 * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,16,18}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 18,
|
|
"index": 0,
|
|
"presentation_length": 33,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a * c * b^-1 * a^-1 * c * b",
|
|
"c^-1 * a^-1 * b^-1 * c^-1 * a * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,16,24}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,16,24}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 24,
|
|
"index": 1,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,16,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,16,26}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,16,26}_3",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,16,26}_7",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b * c^-1 * b",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 26,
|
|
"index": 7,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,18,18}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 18,
|
|
"index": 0,
|
|
"presentation_length": 39,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,18,24}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,18,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,18,26}_3",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 41,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,24,24}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7,
|
|
8,
|
|
22,
|
|
28,
|
|
29,
|
|
31,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,24,24}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 1,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,24,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,24,26}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,24,26}_3",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,24,26}_7",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b * c * b",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 7,
|
|
"presentation_length": 43,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,26,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,26,26}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,26,26}_3",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,26,26}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 4,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,26,26}_5",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 5,
|
|
"presentation_length": 43,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
14
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,26,26}_15",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"(b * c^-1)^3",
|
|
"b * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 15,
|
|
"presentation_length": 43,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c^-1 * a * b^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,16,16}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 16,
|
|
"index": 0,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a",
|
|
"a^-1 * b^-1 * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"${}^2A_{2}(9)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(81)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,16,16}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 16,
|
|
"index": 1,
|
|
"presentation_length": 27,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a * c^-1 * a^-1 * b^-1 * a^-1",
|
|
"b * a * c^-1 * a^-1 * b^-1 * a * c * a^-1"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(9)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{2}(81)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,16,18}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 18,
|
|
"index": 0,
|
|
"presentation_length": 33,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * a * c^-1 * b * a * c^-1",
|
|
"a * c^-1 * b^-1 * a * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,16,24}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
34,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,16,24}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 24,
|
|
"index": 1,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * a * c^-1 * b * a * c^-1",
|
|
"a * c^-1 * b^-1 * a * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{HS}_{}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
9,
|
|
21,
|
|
29,
|
|
33,
|
|
34
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,16,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,16,26}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 35,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * a * c^-1 * b * a * c^-1",
|
|
"a * c^-1 * b^-1 * a * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
16,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,18,18}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 18,
|
|
"index": 0,
|
|
"presentation_length": 39,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * a^-1 * c^-1 * a^-1 * b * a * c^-1 * a",
|
|
"c^-1 * a * b * a * c^-1 * a * b * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,18,24}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
19,
|
|
34
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,18,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,24,24}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{2}(25)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 1
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{HS}_{}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
8,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
27,
|
|
28,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,24,24}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 1,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$C_{3}(2)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
17,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
27,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,24,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,24,26}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,26,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,26,26}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,26,26}_3",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{16,26,26}_5",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 5,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 1
|
|
},
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
14,
|
|
26,
|
|
28,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{18,18,18}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"(a * c^-1)^3"
|
|
],
|
|
"order1": 18,
|
|
"order2": 18,
|
|
"order3": 18,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a",
|
|
"b * a * c * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
27,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{18,18,24}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 18,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a",
|
|
"b * a * c * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{18,18,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"(c * b^-1)^3",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 18,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"c * a * b * a",
|
|
"b * a * c * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{18,24,24}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
15,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{18,24,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{18,26,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b * c * b",
|
|
"c * a * b^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$G_{2}(3)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{18,26,26}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"(b * a^-1)^3",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 49,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b^-1 * c^-1 * b^-1",
|
|
"b * a * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{24,24,24}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 3
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 1
|
|
},
|
|
{
|
|
"$A_{2}(7)$": 1
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 3
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
13,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{24,24,24}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c * a * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 24,
|
|
"index": 1,
|
|
"presentation_length": 51,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b^-1 * c^-1 * b^-1",
|
|
"b * a * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{M}_{22}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{24,24,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{24,24,26}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 51,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b^-1 * c^-1 * b^-1",
|
|
"b * a * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{24,26,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
26,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{24,26,26}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 51,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b^-1 * c^-1 * b^-1",
|
|
"b * a * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{24,26,26}_3",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(c * a^-1)^3",
|
|
"c * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 3,
|
|
"presentation_length": 51,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b^-1 * c^-1 * b^-1",
|
|
"b * a * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
16,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{24,26,26}_5",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 5,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{26,26,26}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c)^3",
|
|
"a * c * a^-1 * c * a^-1 * c * a^-1 * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 1
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{26,26,26}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"(c * b)^3",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 1,
|
|
"presentation_length": 51,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"a^-1 * b^-1 * c^-1 * b^-1",
|
|
"b * a * c^-1 * a"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{2}(16)$": 2
|
|
},
|
|
{
|
|
"$G_{2}(3)$": 6
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
13,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{26,26,26}_5",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a)^3",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 5,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{2}(16)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{26,26,26}_21",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
3
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"(b * a^-1)^3",
|
|
"b * a^-1 * b^-1 * a^-1 * b^-1 * a^-1 * b^-1 * a",
|
|
"(c * b^-1)^3",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"(a * c^-1)^3",
|
|
"a * c^-1 * a^-1 * c^-1 * a^-1 * c^-1 * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 26,
|
|
"index": 21,
|
|
"presentation_length": 51,
|
|
"hyperbolic": false,
|
|
"witnesses_non_hyperbolictity": [
|
|
"b^-1 * a * c^-1 * a",
|
|
"a^-1 * b * c^-1 * b"
|
|
],
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 5
|
|
},
|
|
{
|
|
"${}^2A_{2}(16)$": 3
|
|
},
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
},
|
|
{
|
|
"${}^2F_4(2)'$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
13,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 36
|
|
},
|
|
{
|
|
"name": "$G^{14,14,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{J}_{1}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,14,40}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 40,
|
|
"index": 4,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{M}_{22}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
7,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,14,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(25)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,14,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
8
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,14,48}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 48,
|
|
"index": 4,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,14,48}_5",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 48,
|
|
"index": 5,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{M}_{22}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
8,
|
|
21
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,14,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"${}^2A_{2}(9)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,14,54}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c^-1 * b * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 14,
|
|
"order3": 54,
|
|
"index": 4,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,16,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7^2)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,16,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,16,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,16,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,16,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 16,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,18,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{J}_{2}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
21,
|
|
25
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,18,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,18,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,18,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 18,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
21,
|
|
28,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,24,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
7,
|
|
10
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,24,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,24,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 1
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7,
|
|
8,
|
|
15,
|
|
22,
|
|
28,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,24,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
18
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,24,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$C_{3}(2)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
14,
|
|
21,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,26,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,26,40}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 4,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,26,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,26,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,26,48}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 4,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,26,48}_5",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 5,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,26,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,26,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,26,54}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 4,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,26,54}_6",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 6,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,16,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{M}_{11}$": 1
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 1
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
21,
|
|
26,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,16,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(9)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(81)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{HS}_{}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
9,
|
|
21,
|
|
26,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,16,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 29,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"${}^2A_{2}(9)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 1
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(81)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,16,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 16,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 1
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
18,
|
|
22,
|
|
25,
|
|
26,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,18,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 5
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
6,
|
|
18,
|
|
24,
|
|
27,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,18,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 35,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
17,
|
|
19,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,18,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
25,
|
|
26,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,18,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 18,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
20,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,24,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(5)$": 2
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6,
|
|
11,
|
|
21,
|
|
22
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,24,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 1
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 5
|
|
},
|
|
{
|
|
"$\\textrm{HS}_{}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
9,
|
|
14,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,24,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{2}(25)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 1
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 1
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{HS}_{}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
8,
|
|
10,
|
|
12,
|
|
15,
|
|
16,
|
|
18,
|
|
19,
|
|
20,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,24,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 1
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
12,
|
|
18,
|
|
19,
|
|
21,
|
|
25,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,24,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
12,
|
|
14,
|
|
16,
|
|
19,
|
|
20,
|
|
22,
|
|
23,
|
|
24,
|
|
26,
|
|
27,
|
|
28,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,26,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"${}^2F_4(2)'$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,26,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
16,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,26,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,26,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,26,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,18,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 18,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{M}_{12}$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
12,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
24,
|
|
26,
|
|
27,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,18,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 18,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,18,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 18,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
19,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,24,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 24,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{M}_{12}$": 6
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,24,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,24,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,24,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 18,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,26,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,26,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,26,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
26,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,26,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 18,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,24,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)",
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{M}_{22}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 4
|
|
},
|
|
{
|
|
"$C_{2}(4)$": 4
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 1
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 8
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
7,
|
|
12,
|
|
13,
|
|
15,
|
|
16,
|
|
17,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,24,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{M}_{22}$": 1
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 6
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 5
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,24,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(25)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 1
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 3
|
|
},
|
|
{
|
|
"$A_{2}(7)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 3
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{HS}_{}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
8,
|
|
13,
|
|
14,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,24,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 24,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 4
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
16,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,26,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13^2)"
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,26,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,26,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
14,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,26,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,26,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 24,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,26,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,26,40}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 40,
|
|
"index": 4,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"${}^2A_{2}(16)$": 1
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
13,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,26,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
16,
|
|
26
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,26,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
26,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,26,48}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 4,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
26,
|
|
27,
|
|
28,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,26,48}_5",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 48,
|
|
"index": 5,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,26,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c * b",
|
|
"c * b * c^-1 * b * c^-1 * b * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$G_{2}(3)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,26,54}_4",
|
|
"half_girth_type": [
|
|
3,
|
|
3,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b^-1 * c * b^-1",
|
|
"c * b^-1 * c^-1 * b^-1 * c^-1 * b^-1 * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 26,
|
|
"order3": 54,
|
|
"index": 4,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
27
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,40,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 5
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 4
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 2
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 3
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
10,
|
|
11,
|
|
20,
|
|
21,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,40,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 39,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(7^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
7,
|
|
10
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,40,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{J}_{2}$": 1
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
21,
|
|
25
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,40,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{J}_{2}$": 1
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
20,
|
|
21,
|
|
22,
|
|
25,
|
|
27,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,48,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 14,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 31,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
"L_2(7)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 1
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$G_{2}(3)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
7,
|
|
8,
|
|
15,
|
|
16,
|
|
22,
|
|
23,
|
|
24,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,48,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 31,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
4
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,48,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
18
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,48,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$C_{3}(2)$": 3
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
14,
|
|
15,
|
|
21,
|
|
22,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,54,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
21,
|
|
28,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,54,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 14,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 6
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
10,
|
|
13,
|
|
14,
|
|
17,
|
|
19,
|
|
20,
|
|
21,
|
|
23,
|
|
24,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{14,54,54}_8",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b * a",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 14,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
3,
|
|
18,
|
|
21,
|
|
27,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,40,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(\\infty^4)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{M}_{11}$": 4
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 7
|
|
},
|
|
{
|
|
"${}^2A_{2}(25)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 2
|
|
},
|
|
{
|
|
"$C_{2}(4)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 4
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 4
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 11
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 6
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6,
|
|
10,
|
|
11,
|
|
15,
|
|
16,
|
|
17,
|
|
20,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,40,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 39,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{M}_{11}$": 1
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 5
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6,
|
|
11,
|
|
16,
|
|
18,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,40,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 5
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 5
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 3
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
6,
|
|
12,
|
|
17,
|
|
18,
|
|
21,
|
|
23,
|
|
24,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,40,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 5
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 3
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 4
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 4
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
6,
|
|
10,
|
|
12,
|
|
15,
|
|
16,
|
|
18,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,48,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 16,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 31,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(9)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 5
|
|
},
|
|
{
|
|
"${}^2A_{2}(25)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 2
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 5
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 4
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 5
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 5
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(81)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{HS}_{}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
8,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
16,
|
|
18,
|
|
19,
|
|
20,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,48,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 31,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(9)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 8
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 10
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 6
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(81)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{HS}_{}$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
9,
|
|
11,
|
|
14,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,48,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 1
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 3
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 1
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
12,
|
|
17,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,48,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 43,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 4
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 3
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 3
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 5
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,54,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
20,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,54,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 16,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 6
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 12
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 3
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 5
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 5
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 6
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{16,54,54}_8",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a^-1 * b^-1 * a^-1",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 16,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 3
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 7
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 3
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
12,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,40,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 5
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 8
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
7,
|
|
10,
|
|
15,
|
|
17,
|
|
20,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,40,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 5
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 7
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 4
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 10
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 5
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
10,
|
|
11,
|
|
12,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,40,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 4
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 14
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
10,
|
|
12,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,40,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 18,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 3
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 5
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
9,
|
|
12,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,48,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 18,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 37,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 3
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 4
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 9
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,48,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 8
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 4
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
10,
|
|
11,
|
|
12,
|
|
14,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,48,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 18,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 3
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,54,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 61,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
19,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,54,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 18,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 61,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 10
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 3
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 9
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
12,
|
|
15,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{18,54,54}_8",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a^-1 * b * a^-1 * b * a^-1",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 18,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 61,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 8
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 10
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 4
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
12,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,40,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(\\infty^4)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{M}_{22}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 2
|
|
},
|
|
{
|
|
"$C_{2}(4)$": 2
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 2
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 10
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 4
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6,
|
|
7,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
17,
|
|
18,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,40,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)",
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{M}_{22}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 4
|
|
},
|
|
{
|
|
"$C_{2}(4)$": 4
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 3
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 12
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 5
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
7,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,40,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 59,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 6
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 12
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 3
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 12
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,40,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 24,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 59,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 6
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 7
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 6
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 7
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 6
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,48,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 24,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 39,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 4
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(25)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 2
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 11
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"$A_{2}(7)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 3
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 7
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 13
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{HS}_{}$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
8,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,48,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 39,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{M}_{22}$": 1
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 17
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 8
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 5
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 3
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 8
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
},
|
|
{
|
|
"$\\textrm{HS}_{}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
9,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,48,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 5
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 1
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 2
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 4
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,48,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 24,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 3
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 5
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 5
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 10
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 12
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,54,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 63,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 6
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 4
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 8
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 2
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,54,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 24,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 63,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 9
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 6
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 22
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 8
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 26
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 12
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 12
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{24,54,54}_8",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a^-1 * b * a^-1",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 24,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 63,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 14
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 9
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,40,40}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 55,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{3}(3)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
20,
|
|
21,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,40,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 47,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(13^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"${}^2F_4(2)'$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,40,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 59,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{3}(3)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,40,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 26,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 59,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [],
|
|
"alternating_quotients": [
|
|
15
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,48,48}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 26,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 39,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
14,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,48,48}_1",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 39,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
"L_2(13)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$G_{2}(3)$": 4
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,48,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
26,
|
|
27,
|
|
28
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,48,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 26,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 51,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$G_{2}(3)$": 1
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 1
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
26,
|
|
27,
|
|
28,
|
|
29
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,54,54}_0",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 63,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
26,
|
|
27,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,54,54}_2",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 26,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 63,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 20
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13,
|
|
16,
|
|
19,
|
|
22,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{26,54,54}_8",
|
|
"half_girth_type": [
|
|
3,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b * a",
|
|
"b * a * b^-1 * a * b^-1 * a * b^-1 * a^-1",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 26,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 63,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": null,
|
|
"abelianization_dimension": 2,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 6
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
13
|
|
],
|
|
"maximal_degree_alternating_quotients": 30
|
|
},
|
|
{
|
|
"name": "$G^{40,40,40}_0",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c^-1 * a * c * a * c^-1 * a * c",
|
|
"a^-1 * c^-1 * a * c^-1 * a^-1 * c^-1 * a * c^-1"
|
|
],
|
|
"order1": 40,
|
|
"order2": 40,
|
|
"order3": 40,
|
|
"index": 0,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(\\infty^4)",
|
|
"L_2(\\infty^4)",
|
|
"L_2(\\infty^4)",
|
|
"L_2(\\infty^4)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 1
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 18
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 7
|
|
},
|
|
{
|
|
"${}^2A_{2}(25)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{J}_{1}$": 4
|
|
},
|
|
{
|
|
"$A_{2}(5)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 8
|
|
},
|
|
{
|
|
"$C_{2}(4)$": 21
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 15
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 12
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 90
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 7
|
|
},
|
|
{
|
|
"$\\textrm{HS}_{}$": 12
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
6,
|
|
7,
|
|
10,
|
|
12,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{40,40,48}_0",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 40,
|
|
"order2": 40,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 49,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
"L_2(\\infty^4)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{M}_{11}$": 4
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 8
|
|
},
|
|
{
|
|
"${}^2A_{2}(25)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{M}_{22}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 4
|
|
},
|
|
{
|
|
"$C_{2}(4)$": 2
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 4
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 4
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 16
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 2
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 4
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 10
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 7
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
6,
|
|
7,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{40,40,54}_0",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b^-1 * c * b * c * b^-1 * c * b",
|
|
"c^-1 * b^-1 * c * b^-1 * c^-1 * b^-1 * c * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 40,
|
|
"order2": 40,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 61,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 0,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 5
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 8
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 15
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 4
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 7
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
5,
|
|
7,
|
|
10,
|
|
15,
|
|
16,
|
|
17,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{40,48,48}_0",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 40,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 41,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)",
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{M}_{11}$": 1
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 18
|
|
},
|
|
{
|
|
"$\\textrm{M}_{22}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 6
|
|
},
|
|
{
|
|
"$C_{2}(4)$": 4
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 6
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 10
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 20
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 15
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 8
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 15
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 9
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
7,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{40,48,54}_0",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 40,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 11
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 7
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 7
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 14
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 16
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 7
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{40,48,54}_2",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 40,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 53,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
"L_2(3^2)"
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 17
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 7
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 12
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 20
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 22
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 24
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 15
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
6,
|
|
10,
|
|
11,
|
|
12,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{40,54,54}_0",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 40,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 65,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 8
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 4
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 9
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 17
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 7
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
9,
|
|
10,
|
|
12,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{40,54,54}_2",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 40,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 65,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 12
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 2
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 4
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 16
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 14
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 26
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 40
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 10
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
10,
|
|
11,
|
|
12,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{40,54,54}_8",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a^-1 * b * a * b * a^-1 * b * a",
|
|
"b^-1 * a^-1 * b * a^-1 * b^-1 * a^-1 * b * a^-1",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 40,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 65,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 1,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$B_{2}(3)$": 8
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 12
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 12
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 8
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 16
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
5,
|
|
9,
|
|
12,
|
|
15,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{48,48,48}_0",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b^-1 * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a * c * a^-1 * c^-1 * a^-1 * c^-1"
|
|
],
|
|
"order1": 48,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 0,
|
|
"presentation_length": 33,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(9)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 27
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 3
|
|
},
|
|
{
|
|
"$\\textrm{M}_{22}$": 1
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 39
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 21
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 9
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 33
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 60
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 3
|
|
},
|
|
{
|
|
"${}^2A_{2}(81)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{HS}_{}$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
5,
|
|
9,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{48,48,48}_1",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b^-1 * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c^-1 * a * c^-1 * a^-1 * c * a^-1 * c"
|
|
],
|
|
"order1": 48,
|
|
"order2": 48,
|
|
"order3": 48,
|
|
"index": 1,
|
|
"presentation_length": 33,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$\\textrm{Alt}_{7}$": 3
|
|
},
|
|
{
|
|
"${}^2A_{2}(9)$": 1
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{8}$ or $A_{2}(4)$": 6
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 24
|
|
},
|
|
{
|
|
"$\\textrm{M}_{12}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(25)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{J}_{2}$": 4
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 27
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 3
|
|
},
|
|
{
|
|
"$A_{2}(7)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 15
|
|
},
|
|
{
|
|
"$B_{2}(5)$": 19
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 30
|
|
},
|
|
{
|
|
"$A_{4}(2)$": 4
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 63
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 3
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 1
|
|
},
|
|
{
|
|
"${}^2A_{2}(81)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{HS}_{}$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
7,
|
|
8,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{48,48,54}_0",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b^-1 * a^-1 * b^-1 * a^-1",
|
|
"c * b * c * b * c^-1 * b^-1 * c^-1 * b^-1",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 48,
|
|
"order2": 48,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 45,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 19
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 3
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 3
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 6
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 17
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 28
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 40
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 6
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{48,54,54}_0",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b^-1 * a^-1 * b^-1 * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 48,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 8
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 6
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 2
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 9
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 11
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 25
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 4
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{48,54,54}_2",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b^-1 * a^-1 * b^-1 * a^-1",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 48,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": true,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 10
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 9
|
|
},
|
|
{
|
|
"$C_{3}(2)$": 6
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 22
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 14
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 36
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 28
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 20
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
14,
|
|
15,
|
|
16,
|
|
17,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{48,54,54}_8",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b * a * b^-1 * a^-1 * b^-1 * a^-1",
|
|
"b * c * b^-1 * c^-1 * b^-1 * c * b * c^-1",
|
|
"b * c * b^-1 * c * b * c * b^-1 * c * b * c * b^-1 * c",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 48,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 8,
|
|
"presentation_length": 57,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 18
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 14
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{10}$": 1
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 15
|
|
},
|
|
{
|
|
"${}^2A_{2}(64)$": 2
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 19
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 52
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{11}$": 1
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
4,
|
|
9,
|
|
10,
|
|
11,
|
|
12,
|
|
13,
|
|
15,
|
|
18,
|
|
19,
|
|
20,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{54,54,54}_0",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b^-1 * a * b * a^-1",
|
|
"b * a * b^-1 * a * b * a * b^-1 * a * b * a * b^-1 * a",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"a * c * a^-1 * c^-1 * a^-1 * c * a * c^-1",
|
|
"a * c * a^-1 * c * a * c * a^-1 * c * a * c * a^-1 * c"
|
|
],
|
|
"order1": 54,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 0,
|
|
"presentation_length": 69,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 6
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 10
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
19,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
},
|
|
{
|
|
"name": "$G^{54,54,54}_2",
|
|
"half_girth_type": [
|
|
4,
|
|
4,
|
|
4
|
|
],
|
|
"generators": [
|
|
"a",
|
|
"b",
|
|
"c"
|
|
],
|
|
"relations": [
|
|
"a^3",
|
|
"b^3",
|
|
"c^3",
|
|
"b * a * b^-1 * a^-1 * b^-1 * a * b * a^-1",
|
|
"b * a * b^-1 * a * b * a * b^-1 * a * b * a * b^-1 * a",
|
|
"c * b * c^-1 * b^-1 * c^-1 * b * c * b^-1",
|
|
"c * b * c^-1 * b * c * b * c^-1 * b * c * b * c^-1 * b",
|
|
"c * a * c^-1 * a^-1 * c^-1 * a * c * a^-1",
|
|
"c * a * c^-1 * a * c * a * c^-1 * a * c * a * c^-1 * a"
|
|
],
|
|
"order1": 54,
|
|
"order2": 54,
|
|
"order3": 54,
|
|
"index": 2,
|
|
"presentation_length": 69,
|
|
"hyperbolic": true,
|
|
"witnesses_non_hyperbolictity": null,
|
|
"virtually_torsion_free": null,
|
|
"Kazdhdan_property_T": false,
|
|
"abelianization_dimension": 3,
|
|
"L2_quotients": [
|
|
""
|
|
],
|
|
"quotients": [
|
|
{
|
|
"$A_{2}(3)$": 2
|
|
},
|
|
{
|
|
"$B_{2}(3)$": 8
|
|
},
|
|
{
|
|
"$\\textrm{Alt}_{9}$": 24
|
|
},
|
|
{
|
|
"${}^2A_{3}(9)$": 9
|
|
},
|
|
{
|
|
"$A_{3}(3)$": 13
|
|
},
|
|
{
|
|
"${}^2A_{4}(4)$": 41
|
|
},
|
|
{
|
|
"$A_{2}(9)$": 3
|
|
}
|
|
],
|
|
"alternating_quotients": [
|
|
3,
|
|
9,
|
|
12,
|
|
15,
|
|
18,
|
|
19,
|
|
21,
|
|
22,
|
|
23,
|
|
24,
|
|
25,
|
|
26,
|
|
27,
|
|
28,
|
|
29,
|
|
30,
|
|
31,
|
|
32,
|
|
33,
|
|
34,
|
|
35,
|
|
36,
|
|
37,
|
|
38,
|
|
39,
|
|
40
|
|
],
|
|
"maximal_degree_alternating_quotients": 40
|
|
}
|
|
]
|