redid NLU task files upload
This commit is contained in:
parent
c25548d9ea
commit
4de73a4a11
@ -4,6 +4,10 @@ import pandas as pd
|
||||
from nltk.tokenize import word_tokenize
|
||||
import re
|
||||
import random
|
||||
import nltk
|
||||
|
||||
|
||||
#nltk.download('punkt')
|
||||
|
||||
|
||||
class LineContent:
|
||||
@ -58,9 +62,11 @@ def process_file(file):
|
||||
if email:
|
||||
email_address = email.group()
|
||||
text = text.replace(email_address, '@')
|
||||
text = text.replace("'", "")
|
||||
tokens = word_tokenize(text)
|
||||
tokens = [token.replace('@', email_address) for token in tokens]
|
||||
else:
|
||||
text = text.replace("'", "")
|
||||
tokens = word_tokenize(text)
|
||||
return tokens
|
||||
text_tokens = tokenize(text)
|
||||
@ -90,7 +96,7 @@ def process_file(file):
|
||||
lines_contents = []
|
||||
for _, row in df.iterrows():
|
||||
if row[0] == 'user' and row[1]:
|
||||
# if row[1]:
|
||||
#if row[1]:
|
||||
text = row[1]
|
||||
intents = get_intents(row[2])
|
||||
slots = get_slots(row[2])
|
||||
|
@ -1,85 +1,85 @@
|
||||
from conllu import parse_incr
|
||||
from flair.data import Corpus, Sentence, Token
|
||||
from flair.datasets import SentenceDataset
|
||||
from flair.embeddings import StackedEmbeddings
|
||||
from flair.embeddings import WordEmbeddings
|
||||
from flair.embeddings import CharacterEmbeddings
|
||||
from flair.embeddings import FlairEmbeddings
|
||||
from flair.models import SequenceTagger
|
||||
from flair.trainers import ModelTrainer
|
||||
import random
|
||||
import torch
|
||||
from tabulate import tabulate
|
||||
|
||||
fields = ['id', 'form', 'frame', 'slot']
|
||||
|
||||
|
||||
def nolabel2o(line, i):
|
||||
return 'O' if line[i] == 'NoLabel' else line[i]
|
||||
|
||||
|
||||
def conllu2flair(sentences, label=None):
|
||||
fsentences = []
|
||||
for sentence in sentences:
|
||||
fsentence = Sentence()
|
||||
for token in sentence:
|
||||
ftoken = Token(token['form'])
|
||||
if label:
|
||||
ftoken.add_tag(label, token[label])
|
||||
fsentence.add_token(ftoken)
|
||||
fsentences.append(fsentence)
|
||||
return SentenceDataset(fsentences)
|
||||
|
||||
|
||||
def predict(model, sentence):
|
||||
csentence = [{'form': word} for word in sentence]
|
||||
fsentence = conllu2flair([csentence])[0]
|
||||
model.predict(fsentence)
|
||||
return [(token, ftoken.get_tag('slot').value) for token, ftoken in zip(sentence, fsentence)]
|
||||
|
||||
|
||||
with open('train-pl-full.conllu', encoding='utf-8') as trainfile:
|
||||
trainset = list(parse_incr(trainfile, fields=fields, field_parsers={'slot': nolabel2o}))
|
||||
with open('test-pl-full.conllu', encoding='utf-8') as testfile:
|
||||
testset = list(parse_incr(testfile, fields=fields, field_parsers={'slot': nolabel2o}))
|
||||
|
||||
random.seed(42)
|
||||
torch.manual_seed(42)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(0)
|
||||
torch.cuda.manual_seed_all(0)
|
||||
torch.backends.cudnn.enabled = False
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
corpus = Corpus(train=conllu2flair(trainset, 'slot'), test=conllu2flair(testset, 'slot'))
|
||||
|
||||
tag_dictionary = corpus.make_tag_dictionary(tag_type='slot')
|
||||
|
||||
embedding_types = [
|
||||
WordEmbeddings('pl'),
|
||||
FlairEmbeddings('pl-forward'),
|
||||
FlairEmbeddings('pl-backward'),
|
||||
CharacterEmbeddings(),
|
||||
]
|
||||
|
||||
embeddings = StackedEmbeddings(embeddings=embedding_types)
|
||||
tagger = SequenceTagger(hidden_size=256, embeddings=embeddings,
|
||||
tag_dictionary=tag_dictionary,
|
||||
tag_type='slot', use_crf=True)
|
||||
|
||||
"""
|
||||
trainer = ModelTrainer(tagger, corpus)
|
||||
trainer.train('slot-model-pl',
|
||||
learning_rate=0.1,
|
||||
mini_batch_size=32,
|
||||
max_epochs=10,
|
||||
train_with_dev=True)
|
||||
"""
|
||||
try:
|
||||
model = SequenceTagger.load('slot-model-pl/best-model.pt')
|
||||
except:
|
||||
model = SequenceTagger.load('slot-model-pl/final-model.pt')
|
||||
|
||||
print(tabulate(predict(model, 'Jeden bilet na imię Jan Kowalski na film Batman'.split())))
|
||||
from conllu import parse_incr
|
||||
from flair.data import Corpus, Sentence, Token
|
||||
from flair.datasets import SentenceDataset
|
||||
from flair.embeddings import StackedEmbeddings
|
||||
from flair.embeddings import WordEmbeddings
|
||||
from flair.embeddings import CharacterEmbeddings
|
||||
from flair.embeddings import FlairEmbeddings
|
||||
from flair.models import SequenceTagger
|
||||
from flair.trainers import ModelTrainer
|
||||
import random
|
||||
import torch
|
||||
from tabulate import tabulate
|
||||
|
||||
fields = ['id', 'form', 'frame', 'slot']
|
||||
|
||||
|
||||
def nolabel2o(line, i):
|
||||
return 'O' if line[i] == 'NoLabel' else line[i]
|
||||
|
||||
|
||||
def conllu2flair(sentences, label=None):
|
||||
fsentences = []
|
||||
for sentence in sentences:
|
||||
fsentence = Sentence()
|
||||
for token in sentence:
|
||||
ftoken = Token(token['form'])
|
||||
if label:
|
||||
ftoken.add_tag(label, token[label])
|
||||
fsentence.add_token(ftoken)
|
||||
fsentences.append(fsentence)
|
||||
return SentenceDataset(fsentences)
|
||||
|
||||
|
||||
def predict(model, sentence):
|
||||
csentence = [{'form': word} for word in sentence]
|
||||
fsentence = conllu2flair([csentence])[0]
|
||||
model.predict(fsentence)
|
||||
return [(token, ftoken.get_tag('slot').value) for token, ftoken in zip(sentence, fsentence)]
|
||||
|
||||
|
||||
with open('train-pl.conllu', encoding='utf-8') as trainfile:
|
||||
trainset = list(parse_incr(trainfile, fields=fields, field_parsers={'slot': nolabel2o}))
|
||||
with open('test-pl.conllu', encoding='utf-8') as testfile:
|
||||
testset = list(parse_incr(testfile, fields=fields, field_parsers={'slot': nolabel2o}))
|
||||
|
||||
random.seed(42)
|
||||
torch.manual_seed(42)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(0)
|
||||
torch.cuda.manual_seed_all(0)
|
||||
torch.backends.cudnn.enabled = False
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
corpus = Corpus(train=conllu2flair(trainset, 'slot'), test=conllu2flair(testset, 'slot'))
|
||||
|
||||
tag_dictionary = corpus.make_tag_dictionary(tag_type='slot')
|
||||
|
||||
embedding_types = [
|
||||
WordEmbeddings('pl'),
|
||||
FlairEmbeddings('pl-forward'),
|
||||
FlairEmbeddings('pl-backward'),
|
||||
CharacterEmbeddings(),
|
||||
]
|
||||
|
||||
embeddings = StackedEmbeddings(embeddings=embedding_types)
|
||||
tagger = SequenceTagger(hidden_size=256, embeddings=embeddings,
|
||||
tag_dictionary=tag_dictionary,
|
||||
tag_type='slot', use_crf=True)
|
||||
|
||||
|
||||
trainer = ModelTrainer(tagger, corpus)
|
||||
trainer.train('slot-model-pl',
|
||||
learning_rate=0.1,
|
||||
mini_batch_size=32,
|
||||
max_epochs=10,
|
||||
train_with_dev=True)
|
||||
|
||||
try:
|
||||
model = SequenceTagger.load('slot-model-pl/best-model.pt')
|
||||
except:
|
||||
model = SequenceTagger.load('slot-model-pl/final-model.pt')
|
||||
|
||||
print(tabulate(predict(model, 'Jeden bilet na imię Jan Kowalski na film Batman'.split())))
|
||||
|
@ -1,166 +0,0 @@
|
||||
poproszę O O
|
||||
listę B-goal O
|
||||
filmów I-goal O
|
||||
granych O O
|
||||
jutro B-date B-date
|
||||
wieczorem B-interval I-date
|
||||
|
||||
wagon O O
|
||||
z O O
|
||||
przedziałami O O
|
||||
miejsce O O
|
||||
przy O O
|
||||
oknie O O
|
||||
|
||||
23032022 O O
|
||||
|
||||
o B-goal B-goal
|
||||
której I-goal I-goal
|
||||
jest O O
|
||||
na B-title B-title
|
||||
noże I-title I-title
|
||||
|
||||
a O O
|
||||
jakie O B-goal
|
||||
są O I-goal
|
||||
|
||||
proszę O O
|
||||
o O O
|
||||
godzine O B-goal
|
||||
20:19 B-time I-goal
|
||||
|
||||
a O O
|
||||
jakie O B-goal
|
||||
są O I-goal
|
||||
dostępne O I-goal
|
||||
|
||||
ok O O
|
||||
|
||||
o O B-goal
|
||||
jakich O I-goal
|
||||
godzinach O I-goal
|
||||
grają O O
|
||||
te O O
|
||||
filmy O O
|
||||
|
||||
wszystkie O O
|
||||
|
||||
dziękuję O O
|
||||
|
||||
witam O O
|
||||
|
||||
jakie B-goal B-goal
|
||||
filmy I-goal I-goal
|
||||
są I-goal I-goal
|
||||
teraz O I-goal
|
||||
w O O
|
||||
kinach O O
|
||||
|
||||
wybieram O O
|
||||
godzine O B-date
|
||||
12:00 B-time I-date
|
||||
|
||||
29032022 O O
|
||||
|
||||
halo O O
|
||||
halo O O
|
||||
|
||||
123123 O O
|
||||
|
||||
podaj O O
|
||||
więcej O O
|
||||
informacji O O
|
||||
o O O
|
||||
seansach O O
|
||||
|
||||
ok O O
|
||||
|
||||
z B-area B-area
|
||||
tyłu I-area I-area
|
||||
sali I-area O
|
||||
nie I-area O
|
||||
na I-area B-area
|
||||
samym I-area I-area
|
||||
końcu I-area I-area
|
||||
|
||||
na B-area B-area
|
||||
środku I-area I-area
|
||||
|
||||
do O O
|
||||
widzenia O O
|
||||
|
||||
a O O
|
||||
z B-area B-area
|
||||
przodu I-area I-area
|
||||
gdzieś O O
|
||||
|
||||
dzień O O
|
||||
dobry O O
|
||||
|
||||
jeden B-quantity B-quantity
|
||||
normalny I-quantity O
|
||||
i I-quantity O
|
||||
ulgowy I-quantity O
|
||||
|
||||
witam O O
|
||||
|
||||
dzień O O
|
||||
dobry O O
|
||||
|
||||
czy O O
|
||||
sš O O
|
||||
wcześniejsze B-goal B-goal
|
||||
seanse I-goal I-goal
|
||||
|
||||
kim O O
|
||||
jest O O
|
||||
senior O O
|
||||
|
||||
3 B-quantity B-quantity
|
||||
|
||||
dzień O O
|
||||
dobry O O
|
||||
|
||||
co B-goal O
|
||||
można I-goal O
|
||||
obejrzeć I-goal O
|
||||
w O B-date
|
||||
kwietniu B-interval I-date
|
||||
|
||||
tak O O
|
||||
|
||||
no O O
|
||||
to O O
|
||||
jakoś O O
|
||||
niech O O
|
||||
będzie O O
|
||||
jakoś O O
|
||||
to B-title O
|
||||
będzie I-title O
|
||||
|
||||
wybieram O O
|
||||
na B-title B-title
|
||||
noże I-title I-title
|
||||
o B-time B-time
|
||||
09:30 I-time B-time
|
||||
|
||||
idę O O
|
||||
na O O
|
||||
drugą B-time B-time
|
||||
na O O
|
||||
batmana B-title B-title
|
||||
|
||||
trzy B-quantity B-quantity
|
||||
bileciki O O
|
||||
na B-time B-time
|
||||
19:00 I-time B-time
|
||||
na O O
|
||||
batmana B-title B-title
|
||||
na B-area B-area
|
||||
środku I-area I-area
|
||||
|
||||
co O O
|
||||
leci O O
|
||||
w B-date B-date
|
||||
poniedziałek I-date I-date
|
||||
|
|
@ -1,11 +0,0 @@
|
||||
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
||||
1 15:45:49 0 0.1000 1.107883760221383
|
||||
2 15:46:06 0 0.1000 0.724391172370514
|
||||
3 15:46:23 0 0.1000 0.6198507147675428
|
||||
4 15:46:42 0 0.1000 0.5637349612763847
|
||||
5 15:46:58 0 0.1000 0.48588470330256117
|
||||
6 15:47:14 0 0.1000 0.4225153886549188
|
||||
7 15:47:30 0 0.1000 0.38841035381494515
|
||||
8 15:47:45 0 0.1000 0.3469537376117912
|
||||
9 15:48:00 0 0.1000 0.30912264277005586
|
||||
10 15:48:16 1 0.1000 0.31141101694209966
|
|
File diff suppressed because it is too large
Load Diff
@ -1,261 +0,0 @@
|
||||
2022-05-02 15:44:09,185 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:44:09,185 Model: "SequenceTagger(
|
||||
(embeddings): StackedEmbeddings(
|
||||
(list_embedding_0): WordEmbeddings('pl')
|
||||
(list_embedding_1): FlairEmbeddings(
|
||||
(lm): LanguageModel(
|
||||
(drop): Dropout(p=0.25, inplace=False)
|
||||
(encoder): Embedding(1602, 100)
|
||||
(rnn): LSTM(100, 2048)
|
||||
(decoder): Linear(in_features=2048, out_features=1602, bias=True)
|
||||
)
|
||||
)
|
||||
(list_embedding_2): FlairEmbeddings(
|
||||
(lm): LanguageModel(
|
||||
(drop): Dropout(p=0.25, inplace=False)
|
||||
(encoder): Embedding(1602, 100)
|
||||
(rnn): LSTM(100, 2048)
|
||||
(decoder): Linear(in_features=2048, out_features=1602, bias=True)
|
||||
)
|
||||
)
|
||||
(list_embedding_3): CharacterEmbeddings(
|
||||
(char_embedding): Embedding(275, 25)
|
||||
(char_rnn): LSTM(25, 25, bidirectional=True)
|
||||
)
|
||||
)
|
||||
(word_dropout): WordDropout(p=0.05)
|
||||
(locked_dropout): LockedDropout(p=0.5)
|
||||
(embedding2nn): Linear(in_features=4446, out_features=4446, bias=True)
|
||||
(rnn): LSTM(4446, 256, batch_first=True, bidirectional=True)
|
||||
(linear): Linear(in_features=512, out_features=50, bias=True)
|
||||
(beta): 1.0
|
||||
(weights): None
|
||||
(weight_tensor) None
|
||||
)"
|
||||
2022-05-02 15:44:09,185 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:44:09,185 Corpus: "Corpus: 735 train + 82 dev + 152 test sentences"
|
||||
2022-05-02 15:44:09,185 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:44:09,185 Parameters:
|
||||
2022-05-02 15:44:09,185 - learning_rate: "0.1"
|
||||
2022-05-02 15:44:09,185 - mini_batch_size: "32"
|
||||
2022-05-02 15:44:09,185 - patience: "3"
|
||||
2022-05-02 15:44:09,185 - anneal_factor: "0.5"
|
||||
2022-05-02 15:44:09,185 - max_epochs: "10"
|
||||
2022-05-02 15:44:09,185 - shuffle: "True"
|
||||
2022-05-02 15:44:09,185 - train_with_dev: "True"
|
||||
2022-05-02 15:44:09,185 - batch_growth_annealing: "False"
|
||||
2022-05-02 15:44:09,185 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:44:09,185 Model training base path: "slot-model-pl"
|
||||
2022-05-02 15:44:09,185 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:44:09,185 Device: cpu
|
||||
2022-05-02 15:44:09,185 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:44:09,185 Embeddings storage mode: cpu
|
||||
2022-05-02 15:44:09,212 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:44:12,896 epoch 1 - iter 2/26 - loss 5.40706334 - samples/sec: 17.37 - lr: 0.100000
|
||||
2022-05-02 15:44:17,195 epoch 1 - iter 4/26 - loss 4.38706093 - samples/sec: 14.89 - lr: 0.100000
|
||||
2022-05-02 15:44:20,984 epoch 1 - iter 6/26 - loss 3.63759864 - samples/sec: 16.90 - lr: 0.100000
|
||||
2022-05-02 15:44:25,378 epoch 1 - iter 8/26 - loss 3.26681995 - samples/sec: 14.57 - lr: 0.100000
|
||||
2022-05-02 15:44:29,757 epoch 1 - iter 10/26 - loss 3.05881263 - samples/sec: 14.62 - lr: 0.100000
|
||||
2022-05-02 15:44:40,091 epoch 1 - iter 12/26 - loss 2.53006141 - samples/sec: 6.19 - lr: 0.100000
|
||||
2022-05-02 15:44:52,707 epoch 1 - iter 14/26 - loss 1.93704781 - samples/sec: 5.07 - lr: 0.100000
|
||||
2022-05-02 15:45:02,080 epoch 1 - iter 16/26 - loss 1.63138431 - samples/sec: 6.83 - lr: 0.100000
|
||||
2022-05-02 15:45:14,009 epoch 1 - iter 18/26 - loss 1.40000228 - samples/sec: 5.37 - lr: 0.100000
|
||||
2022-05-02 15:45:23,287 epoch 1 - iter 20/26 - loss 1.23378287 - samples/sec: 6.90 - lr: 0.100000
|
||||
2022-05-02 15:45:34,691 epoch 1 - iter 22/26 - loss 1.12719827 - samples/sec: 5.61 - lr: 0.100000
|
||||
2022-05-02 15:45:40,330 epoch 1 - iter 24/26 - loss 1.13188836 - samples/sec: 11.35 - lr: 0.100000
|
||||
2022-05-02 15:45:49,236 epoch 1 - iter 26/26 - loss 1.10788376 - samples/sec: 7.19 - lr: 0.100000
|
||||
2022-05-02 15:45:49,236 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:45:49,236 EPOCH 1 done: loss 1.1079 - lr 0.1000000
|
||||
2022-05-02 15:45:49,236 BAD EPOCHS (no improvement): 0
|
||||
2022-05-02 15:45:49,237 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:45:50,285 epoch 2 - iter 2/26 - loss 1.25997738 - samples/sec: 61.30 - lr: 0.100000
|
||||
2022-05-02 15:45:51,915 epoch 2 - iter 4/26 - loss 0.91321364 - samples/sec: 39.27 - lr: 0.100000
|
||||
2022-05-02 15:45:53,048 epoch 2 - iter 6/26 - loss 0.97971206 - samples/sec: 56.50 - lr: 0.100000
|
||||
2022-05-02 15:45:54,340 epoch 2 - iter 8/26 - loss 0.87838664 - samples/sec: 49.56 - lr: 0.100000
|
||||
2022-05-02 15:45:55,485 epoch 2 - iter 10/26 - loss 0.86177694 - samples/sec: 55.90 - lr: 0.100000
|
||||
2022-05-02 15:45:56,488 epoch 2 - iter 12/26 - loss 0.81463133 - samples/sec: 63.85 - lr: 0.100000
|
||||
2022-05-02 15:45:57,918 epoch 2 - iter 14/26 - loss 0.76334644 - samples/sec: 44.79 - lr: 0.100000
|
||||
2022-05-02 15:45:59,393 epoch 2 - iter 16/26 - loss 0.78542696 - samples/sec: 43.41 - lr: 0.100000
|
||||
2022-05-02 15:46:00,673 epoch 2 - iter 18/26 - loss 0.74084630 - samples/sec: 49.99 - lr: 0.100000
|
||||
2022-05-02 15:46:02,245 epoch 2 - iter 20/26 - loss 0.71586100 - samples/sec: 40.74 - lr: 0.100000
|
||||
2022-05-02 15:46:04,051 epoch 2 - iter 22/26 - loss 0.71469797 - samples/sec: 35.45 - lr: 0.100000
|
||||
2022-05-02 15:46:05,132 epoch 2 - iter 24/26 - loss 0.71315625 - samples/sec: 59.21 - lr: 0.100000
|
||||
2022-05-02 15:46:06,356 epoch 2 - iter 26/26 - loss 0.72439117 - samples/sec: 52.36 - lr: 0.100000
|
||||
2022-05-02 15:46:06,356 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:46:06,356 EPOCH 2 done: loss 0.7244 - lr 0.1000000
|
||||
2022-05-02 15:46:06,356 BAD EPOCHS (no improvement): 0
|
||||
2022-05-02 15:46:06,356 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:46:07,363 epoch 3 - iter 2/26 - loss 0.93262965 - samples/sec: 63.62 - lr: 0.100000
|
||||
2022-05-02 15:46:08,805 epoch 3 - iter 4/26 - loss 0.66342690 - samples/sec: 44.41 - lr: 0.100000
|
||||
2022-05-02 15:46:10,199 epoch 3 - iter 6/26 - loss 0.69693404 - samples/sec: 45.93 - lr: 0.100000
|
||||
2022-05-02 15:46:11,106 epoch 3 - iter 8/26 - loss 0.71254800 - samples/sec: 70.54 - lr: 0.100000
|
||||
2022-05-02 15:46:12,661 epoch 3 - iter 10/26 - loss 0.68056002 - samples/sec: 41.17 - lr: 0.100000
|
||||
2022-05-02 15:46:14,195 epoch 3 - iter 12/26 - loss 0.62003628 - samples/sec: 41.75 - lr: 0.100000
|
||||
2022-05-02 15:46:15,549 epoch 3 - iter 14/26 - loss 0.62764929 - samples/sec: 47.29 - lr: 0.100000
|
||||
2022-05-02 15:46:16,685 epoch 3 - iter 16/26 - loss 0.64616873 - samples/sec: 56.36 - lr: 0.100000
|
||||
2022-05-02 15:46:18,469 epoch 3 - iter 18/26 - loss 0.65065601 - samples/sec: 35.88 - lr: 0.100000
|
||||
2022-05-02 15:46:19,908 epoch 3 - iter 20/26 - loss 0.64878090 - samples/sec: 44.50 - lr: 0.100000
|
||||
2022-05-02 15:46:21,278 epoch 3 - iter 22/26 - loss 0.63696184 - samples/sec: 46.72 - lr: 0.100000
|
||||
2022-05-02 15:46:22,587 epoch 3 - iter 24/26 - loss 0.63006250 - samples/sec: 48.92 - lr: 0.100000
|
||||
2022-05-02 15:46:23,866 epoch 3 - iter 26/26 - loss 0.61985071 - samples/sec: 50.08 - lr: 0.100000
|
||||
2022-05-02 15:46:23,866 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:46:23,866 EPOCH 3 done: loss 0.6199 - lr 0.1000000
|
||||
2022-05-02 15:46:23,866 BAD EPOCHS (no improvement): 0
|
||||
2022-05-02 15:46:23,867 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:46:25,024 epoch 4 - iter 2/26 - loss 0.82507049 - samples/sec: 55.30 - lr: 0.100000
|
||||
2022-05-02 15:46:26,129 epoch 4 - iter 4/26 - loss 0.78983147 - samples/sec: 57.98 - lr: 0.100000
|
||||
2022-05-02 15:46:27,401 epoch 4 - iter 6/26 - loss 0.69410684 - samples/sec: 50.34 - lr: 0.100000
|
||||
2022-05-02 15:46:28,974 epoch 4 - iter 8/26 - loss 0.62705834 - samples/sec: 40.69 - lr: 0.100000
|
||||
2022-05-02 15:46:30,301 epoch 4 - iter 10/26 - loss 0.57534194 - samples/sec: 48.26 - lr: 0.100000
|
||||
2022-05-02 15:46:32,177 epoch 4 - iter 12/26 - loss 0.55566517 - samples/sec: 34.13 - lr: 0.100000
|
||||
2022-05-02 15:46:33,477 epoch 4 - iter 14/26 - loss 0.56243747 - samples/sec: 49.26 - lr: 0.100000
|
||||
2022-05-02 15:46:35,204 epoch 4 - iter 16/26 - loss 0.56436807 - samples/sec: 37.07 - lr: 0.100000
|
||||
2022-05-02 15:46:36,732 epoch 4 - iter 18/26 - loss 0.58195288 - samples/sec: 41.88 - lr: 0.100000
|
||||
2022-05-02 15:46:38,109 epoch 4 - iter 20/26 - loss 0.58868604 - samples/sec: 46.53 - lr: 0.100000
|
||||
2022-05-02 15:46:39,677 epoch 4 - iter 22/26 - loss 0.56758502 - samples/sec: 40.87 - lr: 0.100000
|
||||
2022-05-02 15:46:41,433 epoch 4 - iter 24/26 - loss 0.55202777 - samples/sec: 36.45 - lr: 0.100000
|
||||
2022-05-02 15:46:42,227 epoch 4 - iter 26/26 - loss 0.56373496 - samples/sec: 80.65 - lr: 0.100000
|
||||
2022-05-02 15:46:42,227 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:46:42,227 EPOCH 4 done: loss 0.5637 - lr 0.1000000
|
||||
2022-05-02 15:46:42,227 BAD EPOCHS (no improvement): 0
|
||||
2022-05-02 15:46:42,228 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:46:43,715 epoch 5 - iter 2/26 - loss 0.45379848 - samples/sec: 43.04 - lr: 0.100000
|
||||
2022-05-02 15:46:44,818 epoch 5 - iter 4/26 - loss 0.54424541 - samples/sec: 58.04 - lr: 0.100000
|
||||
2022-05-02 15:46:46,795 epoch 5 - iter 6/26 - loss 0.55437849 - samples/sec: 32.38 - lr: 0.100000
|
||||
2022-05-02 15:46:47,855 epoch 5 - iter 8/26 - loss 0.58448347 - samples/sec: 60.42 - lr: 0.100000
|
||||
2022-05-02 15:46:49,017 epoch 5 - iter 10/26 - loss 0.57394500 - samples/sec: 55.10 - lr: 0.100000
|
||||
2022-05-02 15:46:50,144 epoch 5 - iter 12/26 - loss 0.56309941 - samples/sec: 56.82 - lr: 0.100000
|
||||
2022-05-02 15:46:51,022 epoch 5 - iter 14/26 - loss 0.56087045 - samples/sec: 72.92 - lr: 0.100000
|
||||
2022-05-02 15:46:52,247 epoch 5 - iter 16/26 - loss 0.54126941 - samples/sec: 52.27 - lr: 0.100000
|
||||
2022-05-02 15:46:53,517 epoch 5 - iter 18/26 - loss 0.54781672 - samples/sec: 50.41 - lr: 0.100000
|
||||
2022-05-02 15:46:54,987 epoch 5 - iter 20/26 - loss 0.52409069 - samples/sec: 43.55 - lr: 0.100000
|
||||
2022-05-02 15:46:56,416 epoch 5 - iter 22/26 - loss 0.51082819 - samples/sec: 44.84 - lr: 0.100000
|
||||
2022-05-02 15:46:58,077 epoch 5 - iter 24/26 - loss 0.50232400 - samples/sec: 38.55 - lr: 0.100000
|
||||
2022-05-02 15:46:58,995 epoch 5 - iter 26/26 - loss 0.48588470 - samples/sec: 69.78 - lr: 0.100000
|
||||
2022-05-02 15:46:58,995 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:46:58,995 EPOCH 5 done: loss 0.4859 - lr 0.1000000
|
||||
2022-05-02 15:46:58,995 BAD EPOCHS (no improvement): 0
|
||||
2022-05-02 15:46:58,995 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:47:00,509 epoch 6 - iter 2/26 - loss 0.52375350 - samples/sec: 42.28 - lr: 0.100000
|
||||
2022-05-02 15:47:02,103 epoch 6 - iter 4/26 - loss 0.41911038 - samples/sec: 40.18 - lr: 0.100000
|
||||
2022-05-02 15:47:03,126 epoch 6 - iter 6/26 - loss 0.41424604 - samples/sec: 62.57 - lr: 0.100000
|
||||
2022-05-02 15:47:04,316 epoch 6 - iter 8/26 - loss 0.39943972 - samples/sec: 53.82 - lr: 0.100000
|
||||
2022-05-02 15:47:05,798 epoch 6 - iter 10/26 - loss 0.36462904 - samples/sec: 43.20 - lr: 0.100000
|
||||
2022-05-02 15:47:06,774 epoch 6 - iter 12/26 - loss 0.37187295 - samples/sec: 65.60 - lr: 0.100000
|
||||
2022-05-02 15:47:07,781 epoch 6 - iter 14/26 - loss 0.40622993 - samples/sec: 63.60 - lr: 0.100000
|
||||
2022-05-02 15:47:08,846 epoch 6 - iter 16/26 - loss 0.42953310 - samples/sec: 60.13 - lr: 0.100000
|
||||
2022-05-02 15:47:10,187 epoch 6 - iter 18/26 - loss 0.41096443 - samples/sec: 47.72 - lr: 0.100000
|
||||
2022-05-02 15:47:11,212 epoch 6 - iter 20/26 - loss 0.42107760 - samples/sec: 62.50 - lr: 0.100000
|
||||
2022-05-02 15:47:12,138 epoch 6 - iter 22/26 - loss 0.42309019 - samples/sec: 69.15 - lr: 0.100000
|
||||
2022-05-02 15:47:13,311 epoch 6 - iter 24/26 - loss 0.42768651 - samples/sec: 54.57 - lr: 0.100000
|
||||
2022-05-02 15:47:14,615 epoch 6 - iter 26/26 - loss 0.42251539 - samples/sec: 49.12 - lr: 0.100000
|
||||
2022-05-02 15:47:14,615 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:47:14,615 EPOCH 6 done: loss 0.4225 - lr 0.1000000
|
||||
2022-05-02 15:47:14,615 BAD EPOCHS (no improvement): 0
|
||||
2022-05-02 15:47:14,615 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:47:15,953 epoch 7 - iter 2/26 - loss 0.42888915 - samples/sec: 47.86 - lr: 0.100000
|
||||
2022-05-02 15:47:16,988 epoch 7 - iter 4/26 - loss 0.46386105 - samples/sec: 61.89 - lr: 0.100000
|
||||
2022-05-02 15:47:17,972 epoch 7 - iter 6/26 - loss 0.45750826 - samples/sec: 65.04 - lr: 0.100000
|
||||
2022-05-02 15:47:19,035 epoch 7 - iter 8/26 - loss 0.45111557 - samples/sec: 60.26 - lr: 0.100000
|
||||
2022-05-02 15:47:20,138 epoch 7 - iter 10/26 - loss 0.44598492 - samples/sec: 58.08 - lr: 0.100000
|
||||
2022-05-02 15:47:21,221 epoch 7 - iter 12/26 - loss 0.43062620 - samples/sec: 59.11 - lr: 0.100000
|
||||
2022-05-02 15:47:22,486 epoch 7 - iter 14/26 - loss 0.43319146 - samples/sec: 50.61 - lr: 0.100000
|
||||
2022-05-02 15:47:23,844 epoch 7 - iter 16/26 - loss 0.40657923 - samples/sec: 47.16 - lr: 0.100000
|
||||
2022-05-02 15:47:25,007 epoch 7 - iter 18/26 - loss 0.41484192 - samples/sec: 55.05 - lr: 0.100000
|
||||
2022-05-02 15:47:26,325 epoch 7 - iter 20/26 - loss 0.41555710 - samples/sec: 48.58 - lr: 0.100000
|
||||
2022-05-02 15:47:27,600 epoch 7 - iter 22/26 - loss 0.40336973 - samples/sec: 50.21 - lr: 0.100000
|
||||
2022-05-02 15:47:29,044 epoch 7 - iter 24/26 - loss 0.39532046 - samples/sec: 44.33 - lr: 0.100000
|
||||
2022-05-02 15:47:30,078 epoch 7 - iter 26/26 - loss 0.38841035 - samples/sec: 61.93 - lr: 0.100000
|
||||
2022-05-02 15:47:30,079 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:47:30,079 EPOCH 7 done: loss 0.3884 - lr 0.1000000
|
||||
2022-05-02 15:47:30,079 BAD EPOCHS (no improvement): 0
|
||||
2022-05-02 15:47:30,079 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:47:31,357 epoch 8 - iter 2/26 - loss 0.41543718 - samples/sec: 50.11 - lr: 0.100000
|
||||
2022-05-02 15:47:32,538 epoch 8 - iter 4/26 - loss 0.32899498 - samples/sec: 54.19 - lr: 0.100000
|
||||
2022-05-02 15:47:33,686 epoch 8 - iter 6/26 - loss 0.35113539 - samples/sec: 55.79 - lr: 0.100000
|
||||
2022-05-02 15:47:34,725 epoch 8 - iter 8/26 - loss 0.38507402 - samples/sec: 61.58 - lr: 0.100000
|
||||
2022-05-02 15:47:35,995 epoch 8 - iter 10/26 - loss 0.42831411 - samples/sec: 50.42 - lr: 0.100000
|
||||
2022-05-02 15:47:37,049 epoch 8 - iter 12/26 - loss 0.39097058 - samples/sec: 60.79 - lr: 0.100000
|
||||
2022-05-02 15:47:38,008 epoch 8 - iter 14/26 - loss 0.37596686 - samples/sec: 66.72 - lr: 0.100000
|
||||
2022-05-02 15:47:39,462 epoch 8 - iter 16/26 - loss 0.37649604 - samples/sec: 44.05 - lr: 0.100000
|
||||
2022-05-02 15:47:40,655 epoch 8 - iter 18/26 - loss 0.37892339 - samples/sec: 53.64 - lr: 0.100000
|
||||
2022-05-02 15:47:42,031 epoch 8 - iter 20/26 - loss 0.35924042 - samples/sec: 46.54 - lr: 0.100000
|
||||
2022-05-02 15:47:43,123 epoch 8 - iter 22/26 - loss 0.35480360 - samples/sec: 58.65 - lr: 0.100000
|
||||
2022-05-02 15:47:44,286 epoch 8 - iter 24/26 - loss 0.34975662 - samples/sec: 55.03 - lr: 0.100000
|
||||
2022-05-02 15:47:45,065 epoch 8 - iter 26/26 - loss 0.34695374 - samples/sec: 82.23 - lr: 0.100000
|
||||
2022-05-02 15:47:45,065 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:47:45,065 EPOCH 8 done: loss 0.3470 - lr 0.1000000
|
||||
2022-05-02 15:47:45,065 BAD EPOCHS (no improvement): 0
|
||||
2022-05-02 15:47:45,066 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:47:46,190 epoch 9 - iter 2/26 - loss 0.25508414 - samples/sec: 56.93 - lr: 0.100000
|
||||
2022-05-02 15:47:47,453 epoch 9 - iter 4/26 - loss 0.32180418 - samples/sec: 50.72 - lr: 0.100000
|
||||
2022-05-02 15:47:48,461 epoch 9 - iter 6/26 - loss 0.40408790 - samples/sec: 63.48 - lr: 0.100000
|
||||
2022-05-02 15:47:49,701 epoch 9 - iter 8/26 - loss 0.39779257 - samples/sec: 51.64 - lr: 0.100000
|
||||
2022-05-02 15:47:51,048 epoch 9 - iter 10/26 - loss 0.36724150 - samples/sec: 47.52 - lr: 0.100000
|
||||
2022-05-02 15:47:51,922 epoch 9 - iter 12/26 - loss 0.35932055 - samples/sec: 73.33 - lr: 0.100000
|
||||
2022-05-02 15:47:53,117 epoch 9 - iter 14/26 - loss 0.34947437 - samples/sec: 53.57 - lr: 0.100000
|
||||
2022-05-02 15:47:54,265 epoch 9 - iter 16/26 - loss 0.32652718 - samples/sec: 55.77 - lr: 0.100000
|
||||
2022-05-02 15:47:55,487 epoch 9 - iter 18/26 - loss 0.32168879 - samples/sec: 52.41 - lr: 0.100000
|
||||
2022-05-02 15:47:56,483 epoch 9 - iter 20/26 - loss 0.32835642 - samples/sec: 64.28 - lr: 0.100000
|
||||
2022-05-02 15:47:57,790 epoch 9 - iter 22/26 - loss 0.33238740 - samples/sec: 48.98 - lr: 0.100000
|
||||
2022-05-02 15:47:59,047 epoch 9 - iter 24/26 - loss 0.32465148 - samples/sec: 50.93 - lr: 0.100000
|
||||
2022-05-02 15:48:00,176 epoch 9 - iter 26/26 - loss 0.30912264 - samples/sec: 56.73 - lr: 0.100000
|
||||
2022-05-02 15:48:00,176 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:48:00,176 EPOCH 9 done: loss 0.3091 - lr 0.1000000
|
||||
2022-05-02 15:48:00,176 BAD EPOCHS (no improvement): 0
|
||||
2022-05-02 15:48:00,176 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:48:01,533 epoch 10 - iter 2/26 - loss 0.34254425 - samples/sec: 47.18 - lr: 0.100000
|
||||
2022-05-02 15:48:02,801 epoch 10 - iter 4/26 - loss 0.37900189 - samples/sec: 50.52 - lr: 0.100000
|
||||
2022-05-02 15:48:03,912 epoch 10 - iter 6/26 - loss 0.33156605 - samples/sec: 57.61 - lr: 0.100000
|
||||
2022-05-02 15:48:05,257 epoch 10 - iter 8/26 - loss 0.30826664 - samples/sec: 47.58 - lr: 0.100000
|
||||
2022-05-02 15:48:06,496 epoch 10 - iter 10/26 - loss 0.32724932 - samples/sec: 51.71 - lr: 0.100000
|
||||
2022-05-02 15:48:07,790 epoch 10 - iter 12/26 - loss 0.30998078 - samples/sec: 49.46 - lr: 0.100000
|
||||
2022-05-02 15:48:09,009 epoch 10 - iter 14/26 - loss 0.30504032 - samples/sec: 52.52 - lr: 0.100000
|
||||
2022-05-02 15:48:10,539 epoch 10 - iter 16/26 - loss 0.28721872 - samples/sec: 41.87 - lr: 0.100000
|
||||
2022-05-02 15:48:11,646 epoch 10 - iter 18/26 - loss 0.29072309 - samples/sec: 57.84 - lr: 0.100000
|
||||
2022-05-02 15:48:12,706 epoch 10 - iter 20/26 - loss 0.30101217 - samples/sec: 60.40 - lr: 0.100000
|
||||
2022-05-02 15:48:13,994 epoch 10 - iter 22/26 - loss 0.30494834 - samples/sec: 49.71 - lr: 0.100000
|
||||
2022-05-02 15:48:15,298 epoch 10 - iter 24/26 - loss 0.31061478 - samples/sec: 49.09 - lr: 0.100000
|
||||
2022-05-02 15:48:16,150 epoch 10 - iter 26/26 - loss 0.31141102 - samples/sec: 75.23 - lr: 0.100000
|
||||
2022-05-02 15:48:16,150 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:48:16,150 EPOCH 10 done: loss 0.3114 - lr 0.1000000
|
||||
2022-05-02 15:48:16,150 BAD EPOCHS (no improvement): 1
|
||||
2022-05-02 15:48:46,752 ----------------------------------------------------------------------------------------------------
|
||||
2022-05-02 15:48:46,768 Testing using last state of model ...
|
||||
2022-05-02 15:49:06,966 0.3 0.1846 0.2286 0.1364
|
||||
2022-05-02 15:49:06,967
|
||||
Results:
|
||||
- F-score (micro) 0.2286
|
||||
- F-score (macro) 0.1296
|
||||
- Accuracy 0.1364
|
||||
|
||||
By class:
|
||||
precision recall f1-score support
|
||||
|
||||
quantity 0.3571 0.8333 0.5000 6
|
||||
title 0.2857 0.2000 0.2353 10
|
||||
goal 0.0000 0.0000 0.0000 10
|
||||
time 0.4000 0.2222 0.2857 9
|
||||
date 0.6667 0.5000 0.5714 4
|
||||
area 0.0000 0.0000 0.0000 3
|
||||
interval 0.0000 0.0000 0.0000 1
|
||||
movie 0.0000 0.0000 0.0000 3
|
||||
phone 0.0000 0.0000 0.0000 3
|
||||
seat 0.0000 0.0000 0.0000 2
|
||||
hour 0.0000 0.0000 0.0000 2
|
||||
row 0.0000 0.0000 0.0000 2
|
||||
ticketnumber 0.0000 0.0000 0.0000 2
|
||||
name 1.0000 1.0000 1.0000 1
|
||||
e-mail 0.0000 0.0000 0.0000 2
|
||||
ticketsnumber 0.0000 0.0000 0.0000 1
|
||||
sit_place 0.0000 0.0000 0.0000 1
|
||||
email 0.0000 0.0000 0.0000 1
|
||||
bankAccountNumber 0.0000 0.0000 0.0000 1
|
||||
issue 0.0000 0.0000 0.0000 1
|
||||
|
||||
micro avg 0.3000 0.1846 0.2286 65
|
||||
macro avg 0.1355 0.1378 0.1296 65
|
||||
weighted avg 0.1887 0.1846 0.1725 65
|
||||
samples avg 0.1364 0.1364 0.1364 65
|
||||
|
||||
2022-05-02 15:49:06,967 ----------------------------------------------------------------------------------------------------
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user