from conllu import parse_incr from flair.data import Corpus, Sentence, Token from flair.datasets import SentenceDataset from flair.embeddings import StackedEmbeddings from flair.embeddings import WordEmbeddings from flair.embeddings import CharacterEmbeddings from flair.embeddings import FlairEmbeddings from flair.models import SequenceTagger from flair.trainers import ModelTrainer import random import torch from tabulate import tabulate fields = ['id', 'form', 'frame', 'slot'] def nolabel2o(line, i): return 'O' if line[i] == 'NoLabel' else line[i] def conllu2flair(sentences, label=None): fsentences = [] for sentence in sentences: fsentence = Sentence() for token in sentence: ftoken = Token(token['form']) if label: ftoken.add_tag(label, token[label]) fsentence.add_token(ftoken) fsentences.append(fsentence) return SentenceDataset(fsentences) def predict(model, sentence): csentence = [{'form': word} for word in sentence] fsentence = conllu2flair([csentence])[0] model.predict(fsentence) return [(token, ftoken.get_tag('slot').value) for token, ftoken in zip(sentence, fsentence)] with open('train-pl-full.conllu', encoding='utf-8') as trainfile: trainset = list(parse_incr(trainfile, fields=fields, field_parsers={'slot': nolabel2o})) with open('test-pl-full.conllu', encoding='utf-8') as testfile: testset = list(parse_incr(testfile, fields=fields, field_parsers={'slot': nolabel2o})) random.seed(42) torch.manual_seed(42) if torch.cuda.is_available(): torch.cuda.manual_seed(0) torch.cuda.manual_seed_all(0) torch.backends.cudnn.enabled = False torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True corpus = Corpus(train=conllu2flair(trainset, 'slot'), test=conllu2flair(testset, 'slot')) tag_dictionary = corpus.make_tag_dictionary(tag_type='slot') embedding_types = [ WordEmbeddings('pl'), FlairEmbeddings('pl-forward'), FlairEmbeddings('pl-backward'), CharacterEmbeddings(), ] embeddings = StackedEmbeddings(embeddings=embedding_types) tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type='slot', use_crf=True) """ trainer = ModelTrainer(tagger, corpus) trainer.train('slot-model-pl', learning_rate=0.1, mini_batch_size=32, max_epochs=10, train_with_dev=True) """ try: model = SequenceTagger.load('slot-model-pl/best-model.pt') except: model = SequenceTagger.load('slot-model-pl/final-model.pt') print(tabulate(predict(model, 'Jeden bilet na imiÄ™ Jan Kowalski na film Batman'.split())))