add evaluation and baseline
This commit is contained in:
parent
868bc82569
commit
5d1d385ea4
File diff suppressed because one or more lines are too long
@ -14,6 +14,11 @@ it will generate .json file which can be presented by running all cells of `Fuzz
|
||||
|
||||
python main.py --pres -r True
|
||||
|
||||
#### Evaluation mode
|
||||
|
||||
python main.py --pres --eval
|
||||
generates result.json file with 10 random games and 10 recomendations for each game, results can be evaluated in `Fuzzy_presentation.ipynb` file, with Jaccard Similiarity
|
||||
|
||||
Processed dataset files are already provided, but can be created from the base ``games.csv`` file by running:
|
||||
|
||||
python process_dataset.py
|
||||
|
Binary file not shown.
12
main.py
12
main.py
@ -100,19 +100,29 @@ def main(argv):
|
||||
|
||||
test_mode = False
|
||||
random_mode = False
|
||||
eval_mode = False
|
||||
eval_random_mode = False
|
||||
|
||||
opts, args = getopt.getopt(argv, "r:", ["pres"])
|
||||
opts, args = getopt.getopt(argv, "r:", ["pres", "eval", "evalrandom"])
|
||||
for opt, arg in opts:
|
||||
if "--pres" == opt:
|
||||
test_mode = True
|
||||
if "--eval" == opt:
|
||||
eval_mode = True
|
||||
if "--evalrandom" == opt:
|
||||
eval_random_mode = True
|
||||
if "-r" == opt:
|
||||
random_mode = arg
|
||||
if (True == test_mode):
|
||||
game_list = ["Call of Duty®: Modern Warfare® 2", "Project CARS", "DayZ", "STAR WARS™ Jedi Knight - Mysteries of the Sith™", "Overcooked"]
|
||||
if (random_mode): game_list = [random.choice(title_list)]
|
||||
if (eval_mode or eval_random_mode): game_list = [random.choice(title_list) for i in range(10)]
|
||||
result_dict = {"results": []}
|
||||
for item in game_list:
|
||||
if not eval_random_mode:
|
||||
titles_results = calculate_similarities(game_title=item, title_list=title_list, df=df, test=test_mode)
|
||||
if eval_random_mode:
|
||||
titles_results = [{"title": random.choice(title_list)} for i in range(10)]
|
||||
game_result = get_game_info_from_df(df, item)
|
||||
game_result["fuzzy_similiar"] = [get_game_info_from_df(df, title_item["title"]) for title_item in titles_results[:10]]
|
||||
result_dict["results"].append(game_result)
|
||||
|
Loading…
Reference in New Issue
Block a user