compare_to_all_games #1
File diff suppressed because one or more lines are too long
@ -10,6 +10,10 @@
|
||||
python main.py --pres
|
||||
it will generate .json file which can be presented by running all cells of `Fuzzy_presentation.ipynb`
|
||||
|
||||
#### Random mode
|
||||
|
||||
python main.py --pres -r True
|
||||
|
||||
Processed dataset files are already provided, but can be created from the base ``games.csv`` file by running:
|
||||
|
||||
python process_dataset.py
|
||||
|
13
main.py
13
main.py
@ -4,11 +4,11 @@ from numpy import dot
|
||||
from numpy.linalg import norm
|
||||
import json
|
||||
import multiprocessing
|
||||
import tqdm
|
||||
from tqdm.auto import tqdm
|
||||
from sys import argv
|
||||
import sys, getopt
|
||||
import argparse
|
||||
|
||||
import random
|
||||
|
||||
def find_games_categorical_similarity(game_1: pd.DataFrame, game_2: pd.DataFrame) -> float:
|
||||
game_1_categorical = set(game_1['all_categorical'].tolist()[0])
|
||||
@ -39,7 +39,7 @@ def calculate_similarities(game_title, title_list, df, test=False):
|
||||
similarities = []
|
||||
# call the function for each item in parallel with multiprocessing
|
||||
with multiprocessing.Pool() as pool:
|
||||
for result in pool.starmap(compare_games, tqdm.tqdm(args_list, total=len(args_list), desc='Searching')):
|
||||
for result in pool.starmap(compare_games, tqdm(args_list, total=len(args_list), desc='Searching')):
|
||||
similarities.append(result)
|
||||
|
||||
all_games = []
|
||||
@ -99,12 +99,17 @@ def main(argv):
|
||||
title_list = df["name"].values.tolist()
|
||||
|
||||
test_mode = False
|
||||
opts, args = getopt.getopt(argv, "", ["pres"])
|
||||
random_mode = False
|
||||
|
||||
opts, args = getopt.getopt(argv, "r:", ["pres"])
|
||||
for opt, arg in opts:
|
||||
if "--pres" == opt:
|
||||
test_mode = True
|
||||
if "-r" == opt:
|
||||
random_mode = arg
|
||||
if (True == test_mode):
|
||||
game_list = ["Call of Duty®: Modern Warfare® 2", "Project CARS", "DayZ", "STAR WARS™ Jedi Knight - Mysteries of the Sith™", "Overcooked"]
|
||||
if (random_mode): game_list = [random.choice(title_list)]
|
||||
result_dict = {"results": []}
|
||||
for item in game_list:
|
||||
titles_results = calculate_similarities(game_title=item, title_list=title_list, df=df, test=test_mode)
|
||||
|
Loading…
Reference in New Issue
Block a user