compare_to_all_games #1
File diff suppressed because one or more lines are too long
@ -10,6 +10,10 @@
|
|||||||
python main.py --pres
|
python main.py --pres
|
||||||
it will generate .json file which can be presented by running all cells of `Fuzzy_presentation.ipynb`
|
it will generate .json file which can be presented by running all cells of `Fuzzy_presentation.ipynb`
|
||||||
|
|
||||||
|
#### Random mode
|
||||||
|
|
||||||
|
python main.py --pres -r True
|
||||||
|
|
||||||
Processed dataset files are already provided, but can be created from the base ``games.csv`` file by running:
|
Processed dataset files are already provided, but can be created from the base ``games.csv`` file by running:
|
||||||
|
|
||||||
python process_dataset.py
|
python process_dataset.py
|
||||||
|
13
main.py
13
main.py
@ -4,11 +4,11 @@ from numpy import dot
|
|||||||
from numpy.linalg import norm
|
from numpy.linalg import norm
|
||||||
import json
|
import json
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
import tqdm
|
from tqdm.auto import tqdm
|
||||||
from sys import argv
|
from sys import argv
|
||||||
import sys, getopt
|
import sys, getopt
|
||||||
import argparse
|
import argparse
|
||||||
|
import random
|
||||||
|
|
||||||
def find_games_categorical_similarity(game_1: pd.DataFrame, game_2: pd.DataFrame) -> float:
|
def find_games_categorical_similarity(game_1: pd.DataFrame, game_2: pd.DataFrame) -> float:
|
||||||
game_1_categorical = set(game_1['all_categorical'].tolist()[0])
|
game_1_categorical = set(game_1['all_categorical'].tolist()[0])
|
||||||
@ -39,7 +39,7 @@ def calculate_similarities(game_title, title_list, df, test=False):
|
|||||||
similarities = []
|
similarities = []
|
||||||
# call the function for each item in parallel with multiprocessing
|
# call the function for each item in parallel with multiprocessing
|
||||||
with multiprocessing.Pool() as pool:
|
with multiprocessing.Pool() as pool:
|
||||||
for result in pool.starmap(compare_games, tqdm.tqdm(args_list, total=len(args_list), desc='Searching')):
|
for result in pool.starmap(compare_games, tqdm(args_list, total=len(args_list), desc='Searching')):
|
||||||
similarities.append(result)
|
similarities.append(result)
|
||||||
|
|
||||||
all_games = []
|
all_games = []
|
||||||
@ -99,12 +99,17 @@ def main(argv):
|
|||||||
title_list = df["name"].values.tolist()
|
title_list = df["name"].values.tolist()
|
||||||
|
|
||||||
test_mode = False
|
test_mode = False
|
||||||
opts, args = getopt.getopt(argv, "", ["pres"])
|
random_mode = False
|
||||||
|
|
||||||
|
opts, args = getopt.getopt(argv, "r:", ["pres"])
|
||||||
for opt, arg in opts:
|
for opt, arg in opts:
|
||||||
if "--pres" == opt:
|
if "--pres" == opt:
|
||||||
test_mode = True
|
test_mode = True
|
||||||
|
if "-r" == opt:
|
||||||
|
random_mode = arg
|
||||||
if (True == test_mode):
|
if (True == test_mode):
|
||||||
game_list = ["Call of Duty®: Modern Warfare® 2", "Project CARS", "DayZ", "STAR WARS™ Jedi Knight - Mysteries of the Sith™", "Overcooked"]
|
game_list = ["Call of Duty®: Modern Warfare® 2", "Project CARS", "DayZ", "STAR WARS™ Jedi Knight - Mysteries of the Sith™", "Overcooked"]
|
||||||
|
if (random_mode): game_list = [random.choice(title_list)]
|
||||||
result_dict = {"results": []}
|
result_dict = {"results": []}
|
||||||
for item in game_list:
|
for item in game_list:
|
||||||
titles_results = calculate_similarities(game_title=item, title_list=title_list, df=df, test=test_mode)
|
titles_results = calculate_similarities(game_title=item, title_list=title_list, df=df, test=test_mode)
|
||||||
|
Loading…
Reference in New Issue
Block a user