compare_to_all_games #1
1646
Fuzzy_presentation.ipynb
Normal file
1646
Fuzzy_presentation.ipynb
Normal file
File diff suppressed because one or more lines are too long
@ -5,8 +5,14 @@
|
||||
pip install -r requirements.txt
|
||||
python main.py
|
||||
|
||||
#### To run the project in presentation mode:
|
||||
|
||||
python main.py --pres
|
||||
it will generate .json file which can be presented by running all cells of `Fuzzy_presentation.ipynb`
|
||||
|
||||
Processed dataset files are already provided, but can be created from the base ``games.csv`` file by running:
|
||||
|
||||
python process_dataset.py
|
||||
|
||||
|
||||
If no ``GoogleNews-vectors-negative300.bin`` file is present, only ``games_processed.csv`` will be created.
|
81049
data/steam_data.csv
Normal file
81049
data/steam_data.csv
Normal file
File diff suppressed because it is too large
Load Diff
65
main.py
65
main.py
@ -5,6 +5,9 @@ from numpy.linalg import norm
|
||||
import json
|
||||
import multiprocessing
|
||||
import tqdm
|
||||
from sys import argv
|
||||
import sys, getopt
|
||||
import argparse
|
||||
|
||||
|
||||
def find_games_categorical_similarity(game_1: pd.DataFrame, game_2: pd.DataFrame) -> float:
|
||||
@ -25,7 +28,7 @@ def find_games_word_vector_distance(game_1: pd.DataFrame, game_2: pd.DataFrame)
|
||||
return round(dot(game_1_vector, game_2_vector) / (norm(game_1_vector) * norm(game_2_vector)), 2)
|
||||
|
||||
|
||||
def calculate_similarities(game_title, title_list, df):
|
||||
def calculate_similarities(game_title, title_list, df, test=False):
|
||||
if game_title in title_list:
|
||||
title_list.remove(game_title)
|
||||
|
||||
@ -47,6 +50,7 @@ def calculate_similarities(game_title, title_list, df):
|
||||
})
|
||||
|
||||
sorted_games = sorted(all_games, key=lambda k: k['similarity'], reverse=True)
|
||||
if (test): return sorted_games[:20]
|
||||
print("\n ==== Top 20 most similar games: ====")
|
||||
for game in sorted_games[:20]:
|
||||
print(f"- {game['title']}")
|
||||
@ -69,15 +73,58 @@ def compare_games(title_1, title_2, df, show_graph=False):
|
||||
vector_distance=word_vector_distance, show_graph=show_graph)
|
||||
return similarity_score
|
||||
|
||||
def get_game_info_from_df(data_games, game_title):
|
||||
finded_game = data_games.loc[data_games["name"] == game_title]
|
||||
# print(finded_game)
|
||||
result_dict = {
|
||||
"title" : finded_game["name"].values[0],
|
||||
"price" : finded_game["price"].values[0],
|
||||
"all_categorical" : finded_game["all_categorical"].values[0],
|
||||
}
|
||||
return result_dict
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
def get_game_info(data_game):
|
||||
# finded_game = data_games.loc[data_games["name"] == game_title]
|
||||
# print(finded_game)
|
||||
result_dict = {
|
||||
"title" : data_game["name"],
|
||||
"price" : data_game["price"],
|
||||
"all_categorical" : data_game["all_categorical"],
|
||||
}
|
||||
return result_dict
|
||||
|
||||
def main(argv):
|
||||
df = pd.read_pickle('data/games_processed_vectorized.csv')
|
||||
title_list = df["name"].values.tolist()
|
||||
while True:
|
||||
print("Welcome to Fuzzy Game Reccomender!\nType in a game title and we will find the most similar games from our database")
|
||||
title = input("Enter the title or type 'exit' to leave: ")
|
||||
if title == "exit":
|
||||
break
|
||||
else:
|
||||
calculate_similarities(game_title=title, title_list=title_list, df=df)
|
||||
|
||||
test_mode = False
|
||||
opts, args = getopt.getopt(argv, "", ["pres"])
|
||||
for opt, arg in opts:
|
||||
if "--pres" == opt:
|
||||
test_mode = True
|
||||
if (True == test_mode):
|
||||
game_list = ["Call of Duty®: Modern Warfare® 2", "Project CARS", "DayZ", "STAR WARS™ Jedi Knight - Mysteries of the Sith™", "Overcooked"]
|
||||
result_dict = {"results": []}
|
||||
for item in game_list:
|
||||
titles_results = calculate_similarities(game_title=item, title_list=title_list, df=df, test=test_mode)
|
||||
game_result = get_game_info_from_df(df, item)
|
||||
game_result["fuzzy_similiar"] = [get_game_info_from_df(df, title_item["title"]) for title_item in titles_results[:10]]
|
||||
result_dict["results"].append(game_result)
|
||||
with open("results/result.json", "w", encoding="UTF-8") as outfile:
|
||||
json.dump(result_dict, outfile, ensure_ascii=False)
|
||||
|
||||
if (False == test_mode):
|
||||
while True:
|
||||
print("Welcome to Fuzzy Game Reccomender!\nType in a game title and we will find the most similar games from our database")
|
||||
title = input("Enter the title or type 'exit' to leave: ")
|
||||
if title == "exit":
|
||||
break
|
||||
else:
|
||||
calculate_similarities(game_title=title, title_list=title_list, df=df)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(sys.argv[1:])
|
||||
|
||||
|
1
results/result.json
Normal file
1
results/result.json
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user