89 lines
2.9 KiB
Python
89 lines
2.9 KiB
Python
|
import tensorflow as tf
|
||
|
from keras import layers
|
||
|
from keras.models import save_model
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
import sys
|
||
|
from sacred import Experiment
|
||
|
from sacred.observers import FileStorageObserver
|
||
|
from sacred.observers import MongoObserver
|
||
|
|
||
|
# Stworzenie obiektu klasy Experiment do śledzenia przebiegu regresji narzędziem Sacred
|
||
|
ex = Experiment()
|
||
|
|
||
|
# Dodanie obserwatora FileObserver
|
||
|
ex.observers.append(FileStorageObserver('runs'))
|
||
|
|
||
|
#Dodanie obserwatora Mongo
|
||
|
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017', db_name='sacred'))
|
||
|
|
||
|
# Przykładowa modyfikowalna z Sacred konfiguracja wybranych parametrów treningu
|
||
|
@ex.config
|
||
|
def config():
|
||
|
units = 1
|
||
|
learning_rate = 0.1
|
||
|
|
||
|
|
||
|
# Reszta kodu wrzucona do udekorowanej funkcji train do wywołania przez Sacred, żeby coś było capture'owane
|
||
|
@ex.capture
|
||
|
def train(units, learning_rate, _run):
|
||
|
# Pobranie przykładowego argumentu trenowania z poziomu Jenkinsa
|
||
|
EPOCHS_NUM = int(sys.argv[1])
|
||
|
|
||
|
# Wczytanie danych
|
||
|
data_train = pd.read_csv('lego_sets_clean_train.csv')
|
||
|
data_test = pd.read_csv('lego_sets_clean_test.csv')
|
||
|
|
||
|
# Wydzielenie zbiorów dla predykcji ceny zestawu na podstawie liczby klocków, którą zawiera
|
||
|
train_piece_counts = np.array(data_train['piece_count'])
|
||
|
train_prices = np.array(data_train['list_price'])
|
||
|
test_piece_counts = np.array(data_test['piece_count'])
|
||
|
test_prices = np.array(data_test['list_price'])
|
||
|
|
||
|
# Normalizacja
|
||
|
normalizer = layers.Normalization(input_shape=[1, ], axis=None)
|
||
|
normalizer.adapt(train_piece_counts)
|
||
|
|
||
|
# Inicjalizacja
|
||
|
model = tf.keras.Sequential([
|
||
|
normalizer,
|
||
|
layers.Dense(units=units)
|
||
|
])
|
||
|
|
||
|
# Kompilacja
|
||
|
model.compile(
|
||
|
optimizer=tf.optimizers.Adam(learning_rate=learning_rate),
|
||
|
loss='mean_absolute_error'
|
||
|
)
|
||
|
|
||
|
# Trening
|
||
|
history = model.fit(
|
||
|
train_piece_counts,
|
||
|
train_prices,
|
||
|
epochs=EPOCHS_NUM,
|
||
|
verbose=0,
|
||
|
validation_split=0.2
|
||
|
)
|
||
|
|
||
|
# Wykonanie predykcji na danych ze zbioru testującego
|
||
|
y_pred = model.predict(test_piece_counts)
|
||
|
|
||
|
# Zapis predykcji do pliku
|
||
|
results = pd.DataFrame(
|
||
|
{'test_set_piece_count': test_piece_counts.tolist(), 'predicted_price': [round(a[0], 2) for a in y_pred.tolist()]})
|
||
|
results.to_csv('lego_reg_results.csv', index=False, header=True)
|
||
|
|
||
|
# Zapis modelu do pliku standardowo poprzez metodę kerasa i poprzez metodę obiektu Experiment z Sacred
|
||
|
model.save('lego_reg_model')
|
||
|
ex.add_artifact('lego_reg_model_art')
|
||
|
|
||
|
# Przykładowo zwracamy coś w charakterze wyników, żeby było widoczne w plikach zapisanych przez obserwator
|
||
|
hist = pd.DataFrame(history.history)
|
||
|
hist['epoch'] = history.epoch
|
||
|
_run.info["train_results"] = str(hist.tail())
|
||
|
return hist.tail()
|
||
|
|
||
|
@ex.automain
|
||
|
def main(units, learning_rate):
|
||
|
print(train())
|