Delete 'lab7/simple_regression.py'
Some checks failed
s449288-training/pipeline/head There was a failure building this commit

This commit is contained in:
Kacper Dudzic 2022-05-05 22:33:48 +02:00
parent a4d0b4123c
commit 03061f60d0

View File

@ -1,89 +0,0 @@
import tensorflow as tf
from keras import layers
from keras.models import save_model
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sys
from sacred import Experiment
from sacred.observers import FileStorageObserver
from sacred.observers import MongoObserver
# Stworzenie obiektu klasy Experiment do śledzenia przebiegu regresji narzędziem Sacred
ex = Experiment()
# Dodanie obserwatora FileObserver
ex.observers.append(FileStorageObserver('runs'))
#Dodanie obserwatora Mongo
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017', db_name='sacred'))
# Przykładowa modyfikowalna z Sacred konfiguracja wybranych parametrów treningu
@ex.config
def config():
units = 1
learning_rate = 0.1
# Reszta kodu wrzucona do udekorowanej funkcji train do wywołania przez Sacred, żeby coś było capture'owane
@ex.capture
def train(units, learning_rate, _run):
# Pobranie przykładowego argumentu trenowania z poziomu Jenkinsa
EPOCHS_NUM = int(sys.argv[1])
# Wczytanie danych
data_train = pd.read_csv('lego_sets_clean_train.csv')
data_test = pd.read_csv('lego_sets_clean_test.csv')
# Wydzielenie zbiorów dla predykcji ceny zestawu na podstawie liczby klocków, którą zawiera
train_piece_counts = np.array(data_train['piece_count'])
train_prices = np.array(data_train['list_price'])
test_piece_counts = np.array(data_test['piece_count'])
test_prices = np.array(data_test['list_price'])
# Normalizacja
normalizer = layers.Normalization(input_shape=[1, ], axis=None)
normalizer.adapt(train_piece_counts)
# Inicjalizacja
model = tf.keras.Sequential([
normalizer,
layers.Dense(units=units)
])
# Kompilacja
model.compile(
optimizer=tf.optimizers.Adam(learning_rate=learning_rate),
loss='mean_absolute_error'
)
# Trening
history = model.fit(
train_piece_counts,
train_prices,
epochs=EPOCHS_NUM,
verbose=0,
validation_split=0.2
)
# Wykonanie predykcji na danych ze zbioru testującego
y_pred = model.predict(test_piece_counts)
# Zapis predykcji do pliku
results = pd.DataFrame(
{'test_set_piece_count': test_piece_counts.tolist(), 'predicted_price': [round(a[0], 2) for a in y_pred.tolist()]})
results.to_csv('lego_reg_results.csv', index=False, header=True)
# Zapis modelu do pliku standardowo poprzez metodę kerasa i poprzez metodę obiektu Experiment z Sacred
model.save('lego_reg_model')
ex.add_artifact('lego_reg_model_art')
# Przykładowo zwracamy coś w charakterze wyników, żeby było widoczne w plikach zapisanych przez obserwator
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
_run.info["train_results"] = str(hist.tail())
return hist.tail()
@ex.automain
def main(units, learning_rate):
print(train())