diff --git a/02_zadanie.ipynb b/02_zadanie.ipynb
deleted file mode 100644
index 3415a76..0000000
--- a/02_zadanie.ipynb
+++ /dev/null
@@ -1,231 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "id": "b726950a",
- "metadata": {},
- "source": [
- "**1. Pobieramy wybrany zbiór**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "13106acf",
- "metadata": {},
- "outputs": [],
- "source": [
- "!pip install --user kaggle \n",
- "!pip install --user pandas\n",
- "!kaggle datasets download -d mterzolo/lego-sets\n",
- "!unzip -o lego-sets.zip"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "661a8c28",
- "metadata": {},
- "source": [
- "**2. Dokonujemy inspekcji danych**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "8dc2c5fa",
- "metadata": {},
- "outputs": [],
- "source": [
- "!pip install pandas"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "90670da6",
- "metadata": {},
- "outputs": [],
- "source": [
- "!wc -l lego_sets.csv\n",
- "!head -n 5 lego_sets.csv # duzo tekstu w niektorych kolumnach..."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "e92afb9c",
- "metadata": {},
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "lego = pd.read_csv('lego_sets.csv')\n",
- "lego # wglad w strukture elementow i klasy, wielkosc itd."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "824ffb81",
- "metadata": {},
- "outputs": [],
- "source": [
- "lego.describe(include='all') # srednia, odchylenie standardowe itd."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "290de05b",
- "metadata": {},
- "outputs": [],
- "source": [
- "lego[\"theme_name\"].value_counts() # rozklad czestosci dla przykladowej klasy (tematyka zestawu)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "151119d7",
- "metadata": {},
- "source": [
- "**3. Preprocessing**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "7327e72b",
- "metadata": {},
- "outputs": [],
- "source": [
- "!grep -P \"^$\" -n lego_sets.csv # puste linie - nie ma\n",
- "!grep -P \",,\" -n lego_sets.csv # puste pola"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "9e0a4327",
- "metadata": {},
- "outputs": [],
- "source": [
- "# usuwamy puste pola\n",
- "lego_all = pd.read_csv('lego_sets.csv').dropna()\n",
- "lego_all.to_csv('lego_sets_clean.csv', index = None, header=True)\n",
- "lego_clean = pd.read_csv('lego_sets_clean.csv')\n",
- "lego_clean"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "89840c87",
- "metadata": {},
- "source": [
- "**4. Normalizacja**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "c1f33e04",
- "metadata": {},
- "outputs": [],
- "source": [
- "!pip install --user numpy\n",
- "import numpy as np\n",
- "\n",
- "# list_price moze byc do dwoch miejsc po przecinku\n",
- "lego_clean['list_price'] = lego_clean['list_price'].round(2)\n",
- "\n",
- "# num_reviews, piece_count i prod_id moga byc wartosciami calkowitymi\n",
- "lego_clean['num_reviews'] = lego_clean['num_reviews'].apply(np.int64)\n",
- "lego_clean['piece_count'] = lego_clean['piece_count'].apply(np.int64)\n",
- "lego_clean['prod_id'] = lego_clean['prod_id'].apply(np.int64)\n",
- "\n",
- "# czysto dla przykladu normalizujemy pozostale floaty (chociaz nie trzeba, wszystkie juz sa w tej samej skali)\n",
- "lego_clean['play_star_rating'] = (lego_clean['play_star_rating'] - lego_clean['play_star_rating'].min() ) / (lego_clean['play_star_rating'].max() - lego_clean['play_star_rating'].min())\n",
- "lego_clean['star_rating'] = (lego_clean['star_rating'] - lego_clean['star_rating'].min() ) / (lego_clean['star_rating'].max() - lego_clean['star_rating'].min())\n",
- "lego_clean['val_star_rating'] = (lego_clean['val_star_rating'] - lego_clean['val_star_rating'].min() ) / (lego_clean['val_star_rating'].max() - lego_clean['val_star_rating'].min())\n",
- "\n",
- "lego_clean.to_csv('lego_sets_clean_normalised.csv', index = None, header=True)\n",
- "lego_clean_normalised = pd.read_csv('lego_sets_clean_normalised.csv')\n",
- "lego_clean_normalised"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "739ea946",
- "metadata": {},
- "source": [
- "**5. Podział na podzbiory**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "1ed5b5bb",
- "metadata": {},
- "outputs": [],
- "source": [
- "!pip install --user sklearn\n",
- "from sklearn.model_selection import train_test_split\n",
- "\n",
- "# pierwszy podzial, wydzielamy zbior treningowy\n",
- "lego_train, lego_rem = train_test_split(lego_clean_normalised, train_size=0.8, random_state=1)\n",
- "\n",
- "# drugi podział, wydzielamy walidacyjny i testowy\n",
- "lego_valid, lego_test = train_test_split(lego_rem, test_size=0.5, random_state=1)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "9d0bdaf9",
- "metadata": {},
- "outputs": [],
- "source": [
- "lego_train"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "dc151dc5",
- "metadata": {},
- "outputs": [],
- "source": [
- "lego_valid"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "4d6ba0fb",
- "metadata": {},
- "outputs": [],
- "source": [
- "lego_test"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.9.7"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}