lab7 exercise start
Some checks failed
s449288-training/pipeline/head There was a failure building this commit

This commit is contained in:
Kacper 2022-05-05 20:23:21 +02:00
parent 81dd2765da
commit 413890d305
4 changed files with 218 additions and 0 deletions

18
lab7/Dockerfile Normal file
View File

@ -0,0 +1,18 @@
FROM ubuntu:latest
WORKDIR /ium
RUN apt update && apt install -y python3-pip
RUN pip3 install pandas
RUN pip3 install numpy
RUN pip3 install sklearn
RUN pip3 install tensorflow
RUN pip3 install matplotlib
RUN pip3 install keras
run pip3 install sacred
run pip3 install pymongo
COPY ./lab7/simple_regression.py ./
COPY ./evaluate.py ./
COPY ./plot.py ./

59
lab7/Jenkinsfile_eval Normal file
View File

@ -0,0 +1,59 @@
pipeline {
agent {
dockerfile true
}
parameters {
gitParameter branchFilter: 'origin/(.*)', defaultValue: 'master', name: 'BRANCH', type: 'PT_BRANCH'
buildSelector(
defaultSelector: lastSuccessful(),
description: 'Which build to use for copying artifacts',
name: 'BUILD_SELECTOR'
)
}
stages {
stage('Stage 1') {
steps {
git branch: "${params.BRANCH}", url: 'https://git.wmi.amu.edu.pl/s449288/ium_s449288.git'
sh 'chmod u+x ./evaluate.py'
echo 'Copying datasets from the create-dataset job...'
copyArtifacts filter: 'lego_sets_clean_test.csv', projectName: 's449288-create-dataset'
echo 'Datasets copied'
echo 'Copying model from the training job...'
copyArtifacts filter: 'lego_reg_model.tar.gz', projectName: "s449288-training/${BRANCH}/", selector: buildParameter('BUILD_SELECTOR')
echo 'Model copied'
sh 'tar xvzf lego_reg_model.tar.gz'
echo 'Optional copying of the metrics file from previous build...'
copyArtifacts filter: 'eval_results.txt', projectName: 's449288-evaluation/master/', optional: true
echo 'Metrics file copied if it did not exist'
echo 'Evaluating model...'
sh 'python3 evaluate.py'
echo 'Model evaluated. Metrics saved. Plot saved.'
sh 'head eval_results.txt'
sh 'file error_plot.jpg'
echo 'Archiving metrics file...'
archiveArtifacts 'eval_results.txt'
echo 'File archived'
script {
LAST_MAE = sh (
script: 'tail -1 eval_results.txt',
returnStdout: true
).trim()
}
}
}
}
post {
success {
emailext body: "SUCCESS - ${LAST_MAE} MAE", subject: 's449288-evaluation build status', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
failure {
emailext body: "FAILURE - ${LAST_MAE} MAE", subject: 's449288-evaluation build status', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
unstable {
emailext body: "UNSTABLE - ${LAST_MAE} MAE", subject: 's449288-evaluation build status', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
changed {
emailext body: "CHANGED - ${LAST_MAE} MAE", subject: 's449288-evaluation build status', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
}
}

52
lab7/Jenkinsfile_train Normal file
View File

@ -0,0 +1,52 @@
pipeline {
agent {
dockerfile true
}
parameters {
string(
defaultValue: '100',
description: 'Example training parameter',
name: 'EPOCHS_NUM'
)
}
stages {
stage('Stage 1') {
steps {
sh 'chmod u+x ./simple_regression.py'
echo 'Copying datasets from create-dataset...'
copyArtifacts filter: '*', projectName: 's449288-create-dataset'
echo 'Datasets copied'
echo 'Conducting simple regression model test'
sh 'python3 simple_regression.py $EPOCHS_NUM'
echo 'Model and predictions saved'
sh 'head lego_reg_results.csv'
sh 'ls -lh lego_reg_model'
echo 'Archiving model...'
sh 'tar -czf lego_reg_model.tar.gz lego_reg_model/'
archiveArtifacts 'lego_reg_model.tar.gz'
echo 'Model archived'
echo 'Archiving Sacred's output repo...'
sh 'ls -lh runs/*/'
sh 'tar -czf sacred_runs.tar.gz runs/'
archiveArtifacts 'sacred_runs.tar.gz'
echo 'Sacred's repo archived'
echo 'Launching the s449288-evaluation job...'
build job: 's449288-evaluation/master/'
}
}
}
post {
success {
emailext body: 'SUCCESS', subject: 's449288-training build status', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
failure {
emailext body: 'FAILURE', subject: 's449288-training build status', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
unstable {
emailext body: 'UNSTABLE', subject: 's449288-training build status', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
changed {
emailext body: 'CHANGED', subject: 's449288-training build status', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
}
}
}

89
lab7/simple_regression.py Normal file
View File

@ -0,0 +1,89 @@
import tensorflow as tf
from keras import layers
from keras.models import save_model
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sys
from sacred import Experiment
from sacred.observers import FileStorageObserver
from sacred.observers import MongoObserver
# Stworzenie obiektu klasy Experiment do śledzenia przebiegu regresji narzędziem Sacred
ex = Experiment()
# Dodanie obserwatora FileObserver
ex.observers.append(FileStorageObserver('runs'))
#Dodanie obserwatora Mongo
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017', db_name='sacred'))
# Przykładowa modyfikowalna z Sacred konfiguracja wybranych parametrów treningu
@ex.config
def config():
units = 1
learning_rate = 0.1
# Reszta kodu wrzucona do udekorowanej funkcji train do wywołania przez Sacred, żeby coś było capture'owane
@ex.capture
def train(units, learning_rate, _run):
# Pobranie przykładowego argumentu trenowania z poziomu Jenkinsa
EPOCHS_NUM = int(sys.argv[1])
# Wczytanie danych
data_train = pd.read_csv('lego_sets_clean_train.csv')
data_test = pd.read_csv('lego_sets_clean_test.csv')
# Wydzielenie zbiorów dla predykcji ceny zestawu na podstawie liczby klocków, którą zawiera
train_piece_counts = np.array(data_train['piece_count'])
train_prices = np.array(data_train['list_price'])
test_piece_counts = np.array(data_test['piece_count'])
test_prices = np.array(data_test['list_price'])
# Normalizacja
normalizer = layers.Normalization(input_shape=[1, ], axis=None)
normalizer.adapt(train_piece_counts)
# Inicjalizacja
model = tf.keras.Sequential([
normalizer,
layers.Dense(units=units)
])
# Kompilacja
model.compile(
optimizer=tf.optimizers.Adam(learning_rate=learning_rate),
loss='mean_absolute_error'
)
# Trening
history = model.fit(
train_piece_counts,
train_prices,
epochs=EPOCHS_NUM,
verbose=0,
validation_split=0.2
)
# Wykonanie predykcji na danych ze zbioru testującego
y_pred = model.predict(test_piece_counts)
# Zapis predykcji do pliku
results = pd.DataFrame(
{'test_set_piece_count': test_piece_counts.tolist(), 'predicted_price': [round(a[0], 2) for a in y_pred.tolist()]})
results.to_csv('lego_reg_results.csv', index=False, header=True)
# Zapis modelu do pliku standardowo poprzez metodę kerasa i poprzez metodę obiektu Experiment z Sacred
model.save('lego_reg_model')
ex.add_artifact('lego_reg_model_art')
# Przykładowo zwracamy coś w charakterze wyników, żeby było widoczne w plikach zapisanych przez obserwator
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
_run.info["train_results"] = str(hist.tail())
return hist.tail()
@ex.automain
def main(units, learning_rate):
print(train())