cleanup of lab6 files
Some checks failed
s449288-evaluation/pipeline/head This commit looks good
s449288-training/pipeline/head There was a failure building this commit

This commit is contained in:
Kacper 2022-05-05 21:03:48 +02:00
parent 75d849741e
commit 509fd41c5f
9 changed files with 260531 additions and 6 deletions

View File

@ -11,6 +11,6 @@ RUN pip3 install tensorflow
RUN pip3 install matplotlib RUN pip3 install matplotlib
RUN pip3 install keras RUN pip3 install keras
COPY ./lego_sets.csv ./
COPY ./process_dataset.py ./
COPY ./simple_regression.py ./ COPY ./simple_regression.py ./
COPY ./evaluate.py ./
COPY ./plot.py ./

View File

@ -1,6 +1,8 @@
pipeline { pipeline {
agent { agent {
dockerfile true dockerfile {
dir 'lab6'
}
} }
parameters { parameters {
gitParameter branchFilter: 'origin/(.*)', defaultValue: 'master', name: 'BRANCH', type: 'PT_BRANCH' gitParameter branchFilter: 'origin/(.*)', defaultValue: 'master', name: 'BRANCH', type: 'PT_BRANCH'

View File

@ -1,6 +1,8 @@
pipeline { pipeline {
agent { agent {
dockerfile true dockerfile {
dir 'lab6'
}
} }
parameters { parameters {
string( string(

130196
lab6/lego_sets.csv Executable file

File diff suppressed because it is too large Load Diff

30
lab6/process_dataset.py Normal file
View File

@ -0,0 +1,30 @@
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
# usuwamy przy okazji puste pola
lego = pd.read_csv('lego_sets.csv', encoding='utf-8').dropna()
# list_price moze byc do dwoch miejsc po przecinku
lego['list_price'] = lego['list_price'].round(2)
# num_reviews, piece_count i prod_id moga byc wartosciami calkowitymi
lego['num_reviews'] = lego['num_reviews'].apply(np.int64)
lego['piece_count'] = lego['piece_count'].apply(np.int64)
lego['prod_id'] = lego['prod_id'].apply(np.int64)
# wglad, statystyki
print(lego)
print(lego.describe(include='all'))
# pierwszy podzial, wydzielamy zbior treningowy
lego_train, lego_rem = train_test_split(lego, train_size=0.8, random_state=1)
# drugi podział, wydzielamy walidacyjny i testowy
lego_valid, lego_test = train_test_split(lego_rem, test_size=0.5, random_state=1)
# zapis
lego.to_csv('lego_sets_clean.csv', index=None, header=True)
lego_train.to_csv('lego_sets_clean_train.csv', index=None, header=True)
lego_valid.to_csv('lego_sets_clean_valid.csv', index=None, header=True)
lego_test.to_csv('lego_sets_clean_test.csv', index=None, header=True)

69
lab6/simple_regression.py Normal file
View File

@ -0,0 +1,69 @@
import tensorflow as tf
from keras import layers
from keras.models import save_model
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sys
# Pobranie przykładowego argumentu trenowania
EPOCHS_NUM = int(sys.argv[1])
# Wczytanie danych
data_train = pd.read_csv('lego_sets_clean_train.csv')
data_test = pd.read_csv('lego_sets_clean_test.csv')
# Wydzielenie zbiorów dla predykcji ceny zestawu na podstawie liczby klocków, którą zawiera
train_piece_counts = np.array(data_train['piece_count'])
train_prices = np.array(data_train['list_price'])
test_piece_counts = np.array(data_test['piece_count'])
test_prices = np.array(data_test['list_price'])
# Normalizacja
normalizer = layers.Normalization(input_shape=[1, ], axis=None)
normalizer.adapt(train_piece_counts)
# Inicjalizacja
model = tf.keras.Sequential([
normalizer,
layers.Dense(units=1)
])
# Kompilacja
model.compile(
optimizer=tf.optimizers.Adam(learning_rate=0.1),
loss='mean_absolute_error'
)
# Trening
history = model.fit(
train_piece_counts,
train_prices,
epochs=EPOCHS_NUM,
verbose=0,
validation_split=0.2
)
# Wykonanie predykcji na danych ze zbioru testującego
y_pred = model.predict(test_piece_counts)
# Zapis predykcji do pliku
results = pd.DataFrame({'test_set_piece_count': test_piece_counts.tolist(), 'predicted_price': [round(a[0], 2) for a in y_pred.tolist()]})
results.to_csv('lego_reg_results.csv', index=False, header=True)
# Zapis modelu do pliku
model.save('lego_reg_model')
# Opcjonalne statystyki, wykresy
'''
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
print(hist.tail())
plt.scatter(train_piece_counts, train_prices, label='Data')
plt.plot(x, y_pred, color='k', label='Predictions')
plt.xlabel('pieces')
plt.ylabel('price')
plt.legend()
plt.show()
'''

View File

@ -13,6 +13,6 @@ RUN pip3 install keras
RUN pip3 install sacred RUN pip3 install sacred
RUN pip3 install pymongo RUN pip3 install pymongo
COPY ./lego_sets.csv ./
COPY ./process_dataset.py ./
COPY ./simple_regression.py ./ COPY ./simple_regression.py ./
COPY ./evaluate.py ./
COPY ./plot.py ./

130196
lab7/lego_sets.csv Executable file

File diff suppressed because it is too large Load Diff

30
lab7/process_dataset.py Normal file
View File

@ -0,0 +1,30 @@
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
# usuwamy przy okazji puste pola
lego = pd.read_csv('lego_sets.csv', encoding='utf-8').dropna()
# list_price moze byc do dwoch miejsc po przecinku
lego['list_price'] = lego['list_price'].round(2)
# num_reviews, piece_count i prod_id moga byc wartosciami calkowitymi
lego['num_reviews'] = lego['num_reviews'].apply(np.int64)
lego['piece_count'] = lego['piece_count'].apply(np.int64)
lego['prod_id'] = lego['prod_id'].apply(np.int64)
# wglad, statystyki
print(lego)
print(lego.describe(include='all'))
# pierwszy podzial, wydzielamy zbior treningowy
lego_train, lego_rem = train_test_split(lego, train_size=0.8, random_state=1)
# drugi podział, wydzielamy walidacyjny i testowy
lego_valid, lego_test = train_test_split(lego_rem, test_size=0.5, random_state=1)
# zapis
lego.to_csv('lego_sets_clean.csv', index=None, header=True)
lego_train.to_csv('lego_sets_clean_train.csv', index=None, header=True)
lego_valid.to_csv('lego_sets_clean_valid.csv', index=None, header=True)
lego_test.to_csv('lego_sets_clean_test.csv', index=None, header=True)