cw5
This commit is contained in:
parent
7dde85eca0
commit
b534c4a05d
@ -7,6 +7,10 @@ RUN apt update && apt install -y python3-pip
|
||||
RUN pip3 install pandas
|
||||
RUN pip3 install numpy
|
||||
RUN pip3 install sklearn
|
||||
RUN pip3 install tensorflow
|
||||
RUN pip3 install matplotlib
|
||||
RUN pip3 install keras
|
||||
|
||||
COPY ./lego_sets.csv ./
|
||||
COPY ./process_dataset.py ./
|
||||
COPY ./simple_regression.py ./
|
||||
|
5
Jenkinsfile
vendored
5
Jenkinsfile
vendored
@ -5,10 +5,13 @@ pipeline {
|
||||
stages {
|
||||
stage('Stage 1') {
|
||||
steps {
|
||||
sh 'chmod u+x ./process_dataset.py'
|
||||
sh 'chmod u+x ./process_dataset.py ./simple_regression.py'
|
||||
echo 'Processing dataset...'
|
||||
sh 'python3 process_dataset.py'
|
||||
echo 'Dataset processed'
|
||||
echo 'Conducting simple regression model test'
|
||||
sh 'python3 simple_regression.py'
|
||||
echo 'Model predictions saved'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -5,10 +5,13 @@ pipeline {
|
||||
stages {
|
||||
stage('Stage 1') {
|
||||
steps {
|
||||
sh 'chmod u+x ./process_dataset.py'
|
||||
sh 'chmod u+x ./process_dataset.py ./simple_regression.py'
|
||||
echo 'Processing dataset...'
|
||||
sh 'python3 process_dataset.py'
|
||||
echo 'Dataset processed'
|
||||
echo 'Conducting simple regression model test'
|
||||
sh 'python3 simple_regression.py'
|
||||
echo 'Model predictions saved'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
70
simple_regression.py
Normal file
70
simple_regression.py
Normal file
@ -0,0 +1,70 @@
|
||||
import tensorflow as tf
|
||||
from keras import layers
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Wczytanie danych
|
||||
data_train = pd.read_csv('lego_sets_clean_train.csv')
|
||||
data_test = pd.read_csv('lego_sets_clean_test.csv')
|
||||
|
||||
# Wydzielenie zbiorów dla predykcji ceny zestawu na podstawie liczby klocków, którą zawiera
|
||||
train_piece_counts = np.array(data_train['piece_count'])
|
||||
train_prices = np.array(data_train['list_price'])
|
||||
test_piece_counts = np.array(data_test['piece_count'])
|
||||
test_prices = np.array(data_test['list_price'])
|
||||
|
||||
# Normalizacja
|
||||
normalizer = layers.Normalization(input_shape=[1, ], axis=None)
|
||||
normalizer.adapt(train_piece_counts)
|
||||
|
||||
# Inicjalizacja
|
||||
model = tf.keras.Sequential([
|
||||
normalizer,
|
||||
layers.Dense(units=1)
|
||||
])
|
||||
|
||||
# Kompilacja
|
||||
model.compile(
|
||||
optimizer=tf.optimizers.Adam(learning_rate=0.1),
|
||||
loss='mean_absolute_error'
|
||||
)
|
||||
|
||||
# Trening
|
||||
history = model.fit(
|
||||
train_piece_counts,
|
||||
train_prices,
|
||||
epochs=100,
|
||||
verbose=0,
|
||||
validation_split=0.2
|
||||
)
|
||||
|
||||
# Prosta ewaluacja
|
||||
test_results = {'model': model.evaluate(
|
||||
test_piece_counts,
|
||||
test_prices, verbose=0)
|
||||
}
|
||||
|
||||
# Wykonanie wielu predykcji
|
||||
x = tf.linspace(100, 7000, 6901)
|
||||
y = model.predict(x)
|
||||
|
||||
# Zapis predykcji do pliku
|
||||
results = pd.DataFrame({"input_piece_count": x.numpy().tolist(), "predicted_price": [a[0] for a in y.tolist()]})
|
||||
results.to_csv(r'lego_linreg_results.csv', index=False, header=True)
|
||||
|
||||
# Opcjonalne statystyki, wykresy
|
||||
'''
|
||||
print(test_results)
|
||||
|
||||
hist = pd.DataFrame(history.history)
|
||||
hist['epoch'] = history.epoch
|
||||
print(hist.tail())
|
||||
|
||||
plt.scatter(train_piece_counts, train_prices, label='Data')
|
||||
plt.plot(x, y, color='k', label='Predictions')
|
||||
plt.xlabel('pieces')
|
||||
plt.ylabel('price')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
'''
|
Loading…
Reference in New Issue
Block a user