lab5 fix
This commit is contained in:
parent
780eb5d964
commit
f5a2673e07
9
Jenkinsfile
vendored
9
Jenkinsfile
vendored
@ -2,6 +2,13 @@ pipeline {
|
||||
agent {
|
||||
dockerfile true
|
||||
}
|
||||
parameters {
|
||||
string(
|
||||
defaultValue: '100',
|
||||
description: 'Example training parameter',
|
||||
name: 'EPOCHS_NUM'
|
||||
)
|
||||
}
|
||||
stages {
|
||||
stage('Stage 1') {
|
||||
steps {
|
||||
@ -10,7 +17,7 @@ pipeline {
|
||||
sh 'python3 process_dataset.py'
|
||||
echo 'Dataset processed'
|
||||
echo 'Conducting simple regression model test'
|
||||
sh 'python3 simple_regression.py'
|
||||
sh 'python3 simple_regression.py $EPOCHS_NUM'
|
||||
echo 'Model predictions saved'
|
||||
sh 'head lego_linreg_results.csv'
|
||||
}
|
||||
|
@ -44,18 +44,11 @@ history = model.fit(
|
||||
validation_split=0.2
|
||||
)
|
||||
|
||||
# Prosta ewaluacja
|
||||
test_results = {'model': model.evaluate(
|
||||
test_piece_counts,
|
||||
test_prices, verbose=0)
|
||||
}
|
||||
|
||||
# Wykonanie wielu predykcji
|
||||
x = tf.linspace(100, 7000, 6901)
|
||||
y = model.predict(x)
|
||||
# Wykonanie predykcji na danych ze zbioru testującego
|
||||
y_pred = model.predict(test_piece_counts)
|
||||
|
||||
# Zapis predykcji do pliku
|
||||
results = pd.DataFrame({"input_piece_count": x.numpy().tolist(), "predicted_price": [a[0] for a in y.tolist()]})
|
||||
results = pd.DataFrame({"test_set_piece_count": test_piece_counts.numpy().tolist(), "predicted_price": [a[0] for a in y_pred.tolist()]})
|
||||
results.to_csv(r'lego_reg_results.csv', index=False, header=True)
|
||||
|
||||
# Zapis modelu do pliku
|
||||
@ -63,6 +56,12 @@ model.save('lego_reg_model')
|
||||
|
||||
# Opcjonalne statystyki, wykresy
|
||||
'''
|
||||
# Prosta ewaluacja
|
||||
test_results = {'model': model.evaluate(
|
||||
test_piece_counts,
|
||||
test_prices, verbose=0)
|
||||
}
|
||||
|
||||
print(test_results)
|
||||
|
||||
hist = pd.DataFrame(history.history)
|
||||
@ -70,7 +69,7 @@ hist['epoch'] = history.epoch
|
||||
print(hist.tail())
|
||||
|
||||
plt.scatter(train_piece_counts, train_prices, label='Data')
|
||||
plt.plot(x, y, color='k', label='Predictions')
|
||||
plt.plot(x, y_pred, color='k', label='Predictions')
|
||||
plt.xlabel('pieces')
|
||||
plt.ylabel('price')
|
||||
plt.legend()
|
||||
|
Loading…
Reference in New Issue
Block a user