import tensorflow as tf from tensorflow import keras from matplotlib import pyplot as plt from matplotlib.ticker import MaxNLocator import numpy as np import pandas as pd # Załadowanie modelu z pliku model = keras.models.load_model('lego_reg_model') # Załadowanie zbioru testowego data_test = pd.read_csv('lego_sets_clean_test.csv') test_piece_counts = np.array(data_test['piece_count']) test_prices = np.array(data_test['list_price']) # Prosta ewaluacja (mean absolute error) test_results = model.evaluate( test_piece_counts, test_prices, verbose=0) # Zapis wartości liczbowej metryki do pliku with open('eval_results.txt', 'a+') as f: f.write(str(test_results) + '\n') # Wygenerowanie i zapisanie do pliku wykresu with open('eval_results.txt') as f: scores = [float(line) for line in f if line] builds = list(range(1, len(scores) + 1)) plot = plt.plot(builds, scores) plt.xlabel('Build number') plt.xticks(range(1, len(scores) + 1)) plt.ylabel('Mean absolute error') plt.title('Model error by build') plt.savefig('error_plot.jpg') plt.show()