import tensorflow as tf from keras import layers from keras.models import save_model import pandas as pd import numpy as np import matplotlib.pyplot as plt import mlflow import mlflow.keras from urllib.parse import urlparse import sys def train(): # Definicja wartości parametrów treningu epochs = int(sys.argv[1]) if len(sys.argv) > 1 else 100 units = int(sys.argv[2]) if len(sys.argv) > 2 else 1 learning_rate = float(sys.argv[3]) if len(sys.argv) > 3 else 0.1 # Konfiguracja serwera i nazwy eksperymentu MLflow # mlflow.set_tracking_uri("http://172.17.0.1:5000") mlflow.set_experiment('s449288') # Podpięcie treningu do MLflow with mlflow.start_run() as run: print('MLflow run experiment_id: {0}'.format(run.info.experiment_id)) print('MLflow run artifact_uri: {0}'.format(run.info.artifact_uri)) # Wczytanie danych data_train = pd.read_csv('lego_sets_clean_train.csv') data_test = pd.read_csv('lego_sets_clean_test.csv') # Wydzielenie zbiorów dla predykcji ceny zestawu na podstawie liczby klocków, którą zawiera train_piece_counts = np.array(data_train['piece_count']) train_prices = np.array(data_train['list_price']) test_piece_counts = np.array(data_test['piece_count']) test_prices = np.array(data_test['list_price']) # Normalizacja normalizer = layers.Normalization(input_shape=[1, ], axis=None) normalizer.adapt(train_piece_counts) # Inicjalizacja model = tf.keras.Sequential([ normalizer, layers.Dense(units=units) ]) # Kompilacja model.compile( optimizer=tf.optimizers.Adam(learning_rate=learning_rate), loss='mean_absolute_error' ) # Trening history = model.fit( train_piece_counts, train_prices, epochs=epochs, verbose=0, validation_split=0.2 ) # Wykonanie predykcji na danych ze zbioru testującego y_pred = model.predict(test_piece_counts) # Zapis predykcji do pliku results = pd.DataFrame( {'test_set_piece_count': test_piece_counts.tolist(), 'predicted_price': [round(a[0], 2) for a in y_pred.tolist()]}) results.to_csv('lego_reg_results.csv', index=False, header=True) # Zapis modelu do pliku model.save('lego_reg_model') # Ewaluacja MAE na potrzeby MLflow (kopia z evaluate.py) mae = model.evaluate( test_piece_counts, test_prices, verbose=0) # Zapis parametrów i metryk dla MLflow mlflow.log_param('epochs', epochs) mlflow.log_param('units', units) mlflow.log_param('learning_rate', learning_rate) mlflow.log_metric("mae", mae) # Logowanie i zapis modelu dla Mlflow signature = mlflow.models.signature.infer_signature(train_piece_counts, model.predict(train_piece_counts)) tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme if tracking_url_type_store != 'file': mlflow.keras.log_model(model, 'lego-model', registered_model_name='TFLegoModel', signature=signature) else: mlflow.keras.log_model(model, 'model', signature=signature, input_example=np.array(500)) if __name__ == '__main__': train()