416 lines
19 KiB
Plaintext
416 lines
19 KiB
Plaintext
|
{
|
|||
|
"cells": [
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 1,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"Defaulting to user installation because normal site-packages is not writeable\n",
|
|||
|
"Requirement already satisfied: numpy in c:\\software\\python3\\lib\\site-packages (1.24.2)\n",
|
|||
|
"Requirement already satisfied: pandas in c:\\software\\python3\\lib\\site-packages (1.5.3)\n",
|
|||
|
"Requirement already satisfied: sklearn in \\\\files\\students\\s478831\\.appdata\\python\\python310\\site-packages (0.0.post4)\n",
|
|||
|
"Requirement already satisfied: xgboost in \\\\files\\students\\s478831\\.appdata\\python\\python310\\site-packages (1.7.5)\n",
|
|||
|
"Requirement already satisfied: python-dateutil>=2.8.1 in c:\\software\\python3\\lib\\site-packages (from pandas) (2.8.2)\n",
|
|||
|
"Requirement already satisfied: pytz>=2020.1 in c:\\software\\python3\\lib\\site-packages (from pandas) (2022.7.1)\n",
|
|||
|
"Requirement already satisfied: scipy in c:\\software\\python3\\lib\\site-packages (from xgboost) (1.10.1)\n",
|
|||
|
"Requirement already satisfied: six>=1.5 in c:\\software\\python3\\lib\\site-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"!pip install numpy pandas sklearn xgboost"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 2,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"import numpy as np\n",
|
|||
|
"import pandas as pd\n",
|
|||
|
"import os, sys\n",
|
|||
|
"from sklearn.preprocessing import MinMaxScaler\n",
|
|||
|
"from xgboost import XGBClassifier\n",
|
|||
|
"from sklearn.model_selection import train_test_split\n",
|
|||
|
"from sklearn.metrics import accuracy_score"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<div>\n",
|
|||
|
"<style scoped>\n",
|
|||
|
" .dataframe tbody tr th:only-of-type {\n",
|
|||
|
" vertical-align: middle;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe tbody tr th {\n",
|
|||
|
" vertical-align: top;\n",
|
|||
|
" }\n",
|
|||
|
"\n",
|
|||
|
" .dataframe thead th {\n",
|
|||
|
" text-align: right;\n",
|
|||
|
" }\n",
|
|||
|
"</style>\n",
|
|||
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|||
|
" <thead>\n",
|
|||
|
" <tr style=\"text-align: right;\">\n",
|
|||
|
" <th></th>\n",
|
|||
|
" <th>name</th>\n",
|
|||
|
" <th>MDVP:Fo(Hz)</th>\n",
|
|||
|
" <th>MDVP:Fhi(Hz)</th>\n",
|
|||
|
" <th>MDVP:Flo(Hz)</th>\n",
|
|||
|
" <th>MDVP:Jitter(%)</th>\n",
|
|||
|
" <th>MDVP:Jitter(Abs)</th>\n",
|
|||
|
" <th>MDVP:RAP</th>\n",
|
|||
|
" <th>MDVP:PPQ</th>\n",
|
|||
|
" <th>Jitter:DDP</th>\n",
|
|||
|
" <th>MDVP:Shimmer</th>\n",
|
|||
|
" <th>...</th>\n",
|
|||
|
" <th>Shimmer:DDA</th>\n",
|
|||
|
" <th>NHR</th>\n",
|
|||
|
" <th>HNR</th>\n",
|
|||
|
" <th>status</th>\n",
|
|||
|
" <th>RPDE</th>\n",
|
|||
|
" <th>DFA</th>\n",
|
|||
|
" <th>spread1</th>\n",
|
|||
|
" <th>spread2</th>\n",
|
|||
|
" <th>D2</th>\n",
|
|||
|
" <th>PPE</th>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </thead>\n",
|
|||
|
" <tbody>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>0</th>\n",
|
|||
|
" <td>phon_R01_S01_1</td>\n",
|
|||
|
" <td>119.992</td>\n",
|
|||
|
" <td>157.302</td>\n",
|
|||
|
" <td>74.997</td>\n",
|
|||
|
" <td>0.00784</td>\n",
|
|||
|
" <td>0.00007</td>\n",
|
|||
|
" <td>0.00370</td>\n",
|
|||
|
" <td>0.00554</td>\n",
|
|||
|
" <td>0.01109</td>\n",
|
|||
|
" <td>0.04374</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.06545</td>\n",
|
|||
|
" <td>0.02211</td>\n",
|
|||
|
" <td>21.033</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.414783</td>\n",
|
|||
|
" <td>0.815285</td>\n",
|
|||
|
" <td>-4.813031</td>\n",
|
|||
|
" <td>0.266482</td>\n",
|
|||
|
" <td>2.301442</td>\n",
|
|||
|
" <td>0.284654</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>1</th>\n",
|
|||
|
" <td>phon_R01_S01_2</td>\n",
|
|||
|
" <td>122.400</td>\n",
|
|||
|
" <td>148.650</td>\n",
|
|||
|
" <td>113.819</td>\n",
|
|||
|
" <td>0.00968</td>\n",
|
|||
|
" <td>0.00008</td>\n",
|
|||
|
" <td>0.00465</td>\n",
|
|||
|
" <td>0.00696</td>\n",
|
|||
|
" <td>0.01394</td>\n",
|
|||
|
" <td>0.06134</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.09403</td>\n",
|
|||
|
" <td>0.01929</td>\n",
|
|||
|
" <td>19.085</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.458359</td>\n",
|
|||
|
" <td>0.819521</td>\n",
|
|||
|
" <td>-4.075192</td>\n",
|
|||
|
" <td>0.335590</td>\n",
|
|||
|
" <td>2.486855</td>\n",
|
|||
|
" <td>0.368674</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>2</th>\n",
|
|||
|
" <td>phon_R01_S01_3</td>\n",
|
|||
|
" <td>116.682</td>\n",
|
|||
|
" <td>131.111</td>\n",
|
|||
|
" <td>111.555</td>\n",
|
|||
|
" <td>0.01050</td>\n",
|
|||
|
" <td>0.00009</td>\n",
|
|||
|
" <td>0.00544</td>\n",
|
|||
|
" <td>0.00781</td>\n",
|
|||
|
" <td>0.01633</td>\n",
|
|||
|
" <td>0.05233</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.08270</td>\n",
|
|||
|
" <td>0.01309</td>\n",
|
|||
|
" <td>20.651</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.429895</td>\n",
|
|||
|
" <td>0.825288</td>\n",
|
|||
|
" <td>-4.443179</td>\n",
|
|||
|
" <td>0.311173</td>\n",
|
|||
|
" <td>2.342259</td>\n",
|
|||
|
" <td>0.332634</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>3</th>\n",
|
|||
|
" <td>phon_R01_S01_4</td>\n",
|
|||
|
" <td>116.676</td>\n",
|
|||
|
" <td>137.871</td>\n",
|
|||
|
" <td>111.366</td>\n",
|
|||
|
" <td>0.00997</td>\n",
|
|||
|
" <td>0.00009</td>\n",
|
|||
|
" <td>0.00502</td>\n",
|
|||
|
" <td>0.00698</td>\n",
|
|||
|
" <td>0.01505</td>\n",
|
|||
|
" <td>0.05492</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.08771</td>\n",
|
|||
|
" <td>0.01353</td>\n",
|
|||
|
" <td>20.644</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.434969</td>\n",
|
|||
|
" <td>0.819235</td>\n",
|
|||
|
" <td>-4.117501</td>\n",
|
|||
|
" <td>0.334147</td>\n",
|
|||
|
" <td>2.405554</td>\n",
|
|||
|
" <td>0.368975</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" <tr>\n",
|
|||
|
" <th>4</th>\n",
|
|||
|
" <td>phon_R01_S01_5</td>\n",
|
|||
|
" <td>116.014</td>\n",
|
|||
|
" <td>141.781</td>\n",
|
|||
|
" <td>110.655</td>\n",
|
|||
|
" <td>0.01284</td>\n",
|
|||
|
" <td>0.00011</td>\n",
|
|||
|
" <td>0.00655</td>\n",
|
|||
|
" <td>0.00908</td>\n",
|
|||
|
" <td>0.01966</td>\n",
|
|||
|
" <td>0.06425</td>\n",
|
|||
|
" <td>...</td>\n",
|
|||
|
" <td>0.10470</td>\n",
|
|||
|
" <td>0.01767</td>\n",
|
|||
|
" <td>19.649</td>\n",
|
|||
|
" <td>1</td>\n",
|
|||
|
" <td>0.417356</td>\n",
|
|||
|
" <td>0.823484</td>\n",
|
|||
|
" <td>-3.747787</td>\n",
|
|||
|
" <td>0.234513</td>\n",
|
|||
|
" <td>2.332180</td>\n",
|
|||
|
" <td>0.410335</td>\n",
|
|||
|
" </tr>\n",
|
|||
|
" </tbody>\n",
|
|||
|
"</table>\n",
|
|||
|
"<p>5 rows × 24 columns</p>\n",
|
|||
|
"</div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
" name MDVP:Fo(Hz) MDVP:Fhi(Hz) MDVP:Flo(Hz) MDVP:Jitter(%) \\\n",
|
|||
|
"0 phon_R01_S01_1 119.992 157.302 74.997 0.00784 \n",
|
|||
|
"1 phon_R01_S01_2 122.400 148.650 113.819 0.00968 \n",
|
|||
|
"2 phon_R01_S01_3 116.682 131.111 111.555 0.01050 \n",
|
|||
|
"3 phon_R01_S01_4 116.676 137.871 111.366 0.00997 \n",
|
|||
|
"4 phon_R01_S01_5 116.014 141.781 110.655 0.01284 \n",
|
|||
|
"\n",
|
|||
|
" MDVP:Jitter(Abs) MDVP:RAP MDVP:PPQ Jitter:DDP MDVP:Shimmer ... \\\n",
|
|||
|
"0 0.00007 0.00370 0.00554 0.01109 0.04374 ... \n",
|
|||
|
"1 0.00008 0.00465 0.00696 0.01394 0.06134 ... \n",
|
|||
|
"2 0.00009 0.00544 0.00781 0.01633 0.05233 ... \n",
|
|||
|
"3 0.00009 0.00502 0.00698 0.01505 0.05492 ... \n",
|
|||
|
"4 0.00011 0.00655 0.00908 0.01966 0.06425 ... \n",
|
|||
|
"\n",
|
|||
|
" Shimmer:DDA NHR HNR status RPDE DFA spread1 \\\n",
|
|||
|
"0 0.06545 0.02211 21.033 1 0.414783 0.815285 -4.813031 \n",
|
|||
|
"1 0.09403 0.01929 19.085 1 0.458359 0.819521 -4.075192 \n",
|
|||
|
"2 0.08270 0.01309 20.651 1 0.429895 0.825288 -4.443179 \n",
|
|||
|
"3 0.08771 0.01353 20.644 1 0.434969 0.819235 -4.117501 \n",
|
|||
|
"4 0.10470 0.01767 19.649 1 0.417356 0.823484 -3.747787 \n",
|
|||
|
"\n",
|
|||
|
" spread2 D2 PPE \n",
|
|||
|
"0 0.266482 2.301442 0.284654 \n",
|
|||
|
"1 0.335590 2.486855 0.368674 \n",
|
|||
|
"2 0.311173 2.342259 0.332634 \n",
|
|||
|
"3 0.334147 2.405554 0.368975 \n",
|
|||
|
"4 0.234513 2.332180 0.410335 \n",
|
|||
|
"\n",
|
|||
|
"[5 rows x 24 columns]"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 4,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"df=pd.read_csv('./parkinsons.data')\n",
|
|||
|
"df.head()"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 5,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"#DataFlair - Get the features and labels\n",
|
|||
|
"features=df.loc[:,df.columns!='status'].values[:,1:]\n",
|
|||
|
"labels=df.loc[:,'status'].values"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 6,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"147 48\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"#DataFlair - Get the count of each label (0 and 1) in labels\n",
|
|||
|
"print(labels[labels==1].shape[0], labels[labels==0].shape[0])"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 7,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"#DataFlair - Scale the features to between -1 and 1\n",
|
|||
|
"scaler=MinMaxScaler((-1,1))\n",
|
|||
|
"x=scaler.fit_transform(features)\n",
|
|||
|
"y=labels"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 8,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": [
|
|||
|
"#DataFlair - Split the dataset\n",
|
|||
|
"x_train,x_test,y_train,y_test=train_test_split(x, y, test_size=0.2, random_state=7)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 9,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"data": {
|
|||
|
"text/html": [
|
|||
|
"<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\
|
|||
|
" colsample_bylevel=None, colsample_bynode=None,\n",
|
|||
|
" colsample_bytree=None, early_stopping_rounds=None,\n",
|
|||
|
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
|
|||
|
" gamma=None, gpu_id=None, grow_policy=None, importance_type=None,\n",
|
|||
|
" interaction_constraints=None, learning_rate=None, max_bin=None,\n",
|
|||
|
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
|
|||
|
" max_delta_step=None, max_depth=None, max_leaves=None,\n",
|
|||
|
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
|
|||
|
" n_estimators=100, n_jobs=None, num_parallel_tree=None,\n",
|
|||
|
" predictor=None, random_state=None, ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">XGBClassifier</label><div class=\"sk-toggleable__content\"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
|
|||
|
" colsample_bylevel=None, colsample_bynode=None,\n",
|
|||
|
" colsample_bytree=None, early_stopping_rounds=None,\n",
|
|||
|
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
|
|||
|
" gamma=None, gpu_id=None, grow_policy=None, importance_type=None,\n",
|
|||
|
" interaction_constraints=None, learning_rate=None, max_bin=None,\n",
|
|||
|
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
|
|||
|
" max_delta_step=None, max_depth=None, max_leaves=None,\n",
|
|||
|
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
|
|||
|
" n_estimators=100, n_jobs=None, num_parallel_tree=None,\n",
|
|||
|
" predictor=None, random_state=None, ...)</pre></div></div></div></div></div>"
|
|||
|
],
|
|||
|
"text/plain": [
|
|||
|
"XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
|
|||
|
" colsample_bylevel=None, colsample_bynode=None,\n",
|
|||
|
" colsample_bytree=None, early_stopping_rounds=None,\n",
|
|||
|
" enable_categorical=False, eval_metric=None, feature_types=None,\n",
|
|||
|
" gamma=None, gpu_id=None, grow_policy=None, importance_type=None,\n",
|
|||
|
" interaction_constraints=None, learning_rate=None, max_bin=None,\n",
|
|||
|
" max_cat_threshold=None, max_cat_to_onehot=None,\n",
|
|||
|
" max_delta_step=None, max_depth=None, max_leaves=None,\n",
|
|||
|
" min_child_weight=None, missing=nan, monotone_constraints=None,\n",
|
|||
|
" n_estimators=100, n_jobs=None, num_parallel_tree=None,\n",
|
|||
|
" predictor=None, random_state=None, ...)"
|
|||
|
]
|
|||
|
},
|
|||
|
"execution_count": 9,
|
|||
|
"metadata": {},
|
|||
|
"output_type": "execute_result"
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"#DataFlair - Train the model\n",
|
|||
|
"model=XGBClassifier()\n",
|
|||
|
"model.fit(x_train,y_train)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": 10,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [
|
|||
|
{
|
|||
|
"name": "stdout",
|
|||
|
"output_type": "stream",
|
|||
|
"text": [
|
|||
|
"94.87179487179486\n"
|
|||
|
]
|
|||
|
}
|
|||
|
],
|
|||
|
"source": [
|
|||
|
"# DataFlair - Calculate the accuracy\n",
|
|||
|
"y_pred=model.predict(x_test)\n",
|
|||
|
"print(accuracy_score(y_test, y_pred)*100)"
|
|||
|
]
|
|||
|
},
|
|||
|
{
|
|||
|
"cell_type": "code",
|
|||
|
"execution_count": null,
|
|||
|
"metadata": {},
|
|||
|
"outputs": [],
|
|||
|
"source": []
|
|||
|
}
|
|||
|
],
|
|||
|
"metadata": {
|
|||
|
"kernelspec": {
|
|||
|
"display_name": "Python 3",
|
|||
|
"language": "python",
|
|||
|
"name": "python3"
|
|||
|
},
|
|||
|
"language_info": {
|
|||
|
"codemirror_mode": {
|
|||
|
"name": "ipython",
|
|||
|
"version": 3
|
|||
|
},
|
|||
|
"file_extension": ".py",
|
|||
|
"mimetype": "text/x-python",
|
|||
|
"name": "python",
|
|||
|
"nbconvert_exporter": "python",
|
|||
|
"pygments_lexer": "ipython3",
|
|||
|
"version": "3.10.10"
|
|||
|
},
|
|||
|
"orig_nbformat": 4
|
|||
|
},
|
|||
|
"nbformat": 4,
|
|||
|
"nbformat_minor": 2
|
|||
|
}
|