{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "1. Załaduj bibliotekę `pandas`." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2. Wczytaj dane z pliku *mieszkania.csv* do zmiennej i wyświetl 5 pierwszych wierczy." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# ODPOWIEDZ:\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "3. Znajdź informacje ilu pokojowe mieszkania są najpopularniejsze i ile ich jest." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# ODPOWIEDZ:\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "4. Znajdź 10 najtańszych mieszkań." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "5. Napisz funkcje ``find_borough(desc)``, która przyjmuje 1 argument typu *string* i zwróci jedną z dzielnic zdefiniowaną w liście ``dzielnice``. Funkcja ma zwrócić pierwszą (wzgledem kolejności) nazwę dzielnicy, która jest zawarta w ``desc``. Jeżeli żadna nazwa nie została odnaleziona, zwróć napis *Inne*." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# ODPOWIEDZ:\n", "\n", "\n", "\n", "# def find_borough(desc):\n", "# dzielnice = ['Stare Miasto',\n", "# 'Wilda',\n", "# 'Jeżyce',\n", "# 'Rataje',\n", "# 'Piątkowo',\n", "# 'Winogrady',\n", "# 'Miłostowo',\n", "# 'Dębiec']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "6. Dodaj kolumnę ``Borough``, która będzie zawierać informacje o dzielnicach i powstanie z kolumny ``Localization``. Wykorzystaj do tego funkcję ``find_borough``." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "7. Wyświetl histogram przedstawiający liczbę ogłoszeń mieszkań z podziałem na dzielnice." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "8. Znajdź średnią cenę mieszkania n-pokojowego." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# ODPOWIEDZ:\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "9. Znajdź dzielnice, które zawierają oferty mieszkań na 13 piętrze." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# ODPOWIEDZ:\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "10. Znajdź wszystkie ogłoszenia mieszkań, które znajdują się na Winogradach, mają 3 pokoje i są położone na 1 piętrze." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" } }, "nbformat": 4, "nbformat_minor": 4 }