diff --git a/cw/11_NER_RNN.ipynb b/cw/11_NER_RNN.ipynb new file mode 100644 index 0000000..23c498f --- /dev/null +++ b/cw/11_NER_RNN.ipynb @@ -0,0 +1,779 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n", + "
\n", + "

Ekstrakcja informacji

\n", + "

11. NER RNN [ćwiczenia]

\n", + "

Jakub Pokrywka (2021)

\n", + "
\n", + "\n", + "![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Podejście softmax z embeddingami na przykładzie NER" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import gensim\n", + "import torch\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "from datasets import load_dataset\n", + "import torchtext\n", + "#from torchtext.vocab import vocab\n", + "from collections import Counter\n", + "\n", + "from sklearn.datasets import fetch_20newsgroups\n", + "# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n", + "\n", + "from sklearn.feature_extraction.text import TfidfVectorizer\n", + "from sklearn.metrics import accuracy_score\n", + "\n", + "from tqdm.notebook import tqdm\n", + "\n", + "import torch" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Reusing dataset conll2003 (/home/kuba/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/63f4ebd1bcb7148b1644497336fd74643d4ce70123334431a3c053b7ee4e96ee)\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7c9a8ca324914c40b7606ab8cd487df2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3 [00:00', '', '', ''])\n", + " vocab.set_default_index(0)\n", + " return vocab" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "vocab = build_vocab(dataset['train']['tokens'])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "21" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "vocab['on']" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def data_process(dt):\n", + " return [ torch.tensor([vocab['']] +[vocab[token] for token in document ] + [vocab['']], dtype = torch.long) for document in dt]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def labels_process(dt):\n", + " return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "train_tokens_ids = data_process(dataset['train']['tokens'])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "test_tokens_ids = data_process(dataset['test']['tokens'])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "validation_tokens_ids = data_process(dataset['validation']['tokens'])" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "train_labels = labels_process(dataset['train']['ner_tags'])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "validation_labels = labels_process(dataset['validation']['ner_tags'])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "test_labels = labels_process(dataset['test']['ner_tags'])" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([ 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 3])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_tokens_ids[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'id': '0',\n", + " 'tokens': ['EU',\n", + " 'rejects',\n", + " 'German',\n", + " 'call',\n", + " 'to',\n", + " 'boycott',\n", + " 'British',\n", + " 'lamb',\n", + " '.'],\n", + " 'pos_tags': [22, 42, 16, 21, 35, 37, 16, 21, 7],\n", + " 'chunk_tags': [11, 21, 11, 12, 21, 22, 11, 12, 0],\n", + " 'ner_tags': [3, 0, 7, 0, 0, 0, 7, 0, 0]}" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset['train'][0]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([0, 3, 0, 7, 0, 0, 0, 7, 0, 0, 0])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_labels[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "def get_scores(y_true, y_pred):\n", + " acc_score = 0\n", + " tp = 0\n", + " fp = 0\n", + " selected_items = 0\n", + " relevant_items = 0 \n", + "\n", + " for p,t in zip(y_pred, y_true):\n", + " if p == t:\n", + " acc_score +=1\n", + "\n", + " if p > 0 and p == t:\n", + " tp +=1\n", + "\n", + " if p > 0:\n", + " selected_items += 1\n", + "\n", + " if t > 0 :\n", + " relevant_items +=1\n", + "\n", + " \n", + " \n", + " if selected_items == 0:\n", + " precision = 1.0\n", + " else:\n", + " precision = tp / selected_items\n", + " \n", + " \n", + " if relevant_items == 0:\n", + " recall = 1.0\n", + " else:\n", + " recall = tp / relevant_items\n", + " \n", + " \n", + " if precision + recall == 0.0 :\n", + " f1 = 0.0\n", + " else:\n", + " f1 = 2* precision * recall / (precision + recall)\n", + "\n", + " return precision, recall, f1" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "num_tags = max([max(x) for x in dataset['train']['ner_tags'] if x]) + 1 " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "class LSTM(torch.nn.Module):\n", + "\n", + " def __init__(self):\n", + " super(LSTM, self).__init__()\n", + " self.emb = torch.nn.Embedding(len(vocab.get_itos()),100)\n", + " self.rec = torch.nn.LSTM(100, 256, 1, batch_first = True)\n", + " self.fc1 = torch.nn.Linear( 256 , 9)\n", + "\n", + " def forward(self, x):\n", + " emb = torch.relu(self.emb(x))\n", + " \n", + " lstm_output, (h_n, c_n) = self.rec(emb)\n", + " \n", + " out_weights = self.fc1(lstm_output)\n", + "\n", + " return out_weights" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "lstm = LSTM()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "criterion = torch.nn.CrossEntropyLoss()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "optimizer = torch.optim.Adam(lstm.parameters())" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "def eval_model(dataset_tokens, dataset_labels, model):\n", + " Y_true = []\n", + " Y_pred = []\n", + " for i in tqdm(range(len(dataset_labels))):\n", + " batch_tokens = dataset_tokens[i].unsqueeze(0)\n", + " tags = list(dataset_labels[i].numpy())\n", + " Y_true += tags\n", + " \n", + " Y_batch_pred_weights = model(batch_tokens).squeeze(0)\n", + " Y_batch_pred = torch.argmax(Y_batch_pred_weights,1)\n", + " Y_pred += list(Y_batch_pred.numpy())\n", + " \n", + "\n", + " return get_scores(Y_true, Y_pred)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "NUM_EPOCHS = 5" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "59e268fa2b29414fb6306ec4ee44d51f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/500 [00:00 1 ?\n", + "- co zrobić, żeby sieć uwzględniała następne tokeny, a nie tylko poprzednie?\n", + "- w jaki sposób wykorzystać taką sieć do zadania zwykłej klasyfikacji?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Zadanie na zajęcia ( 20 minut)\n", + "\n", + "zmodyfikować sieć tak, żeby była używała dwuwarstwowej, dwukierunkowej warstwy GRU oraz dropoutu. Dropout ma nałożony na embeddingi.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Zadanie domowe\n", + "\n", + "\n", + "- stworzyć model seq labelling bazujący na sieci neuronowej opisanej w punkcie niżej (można bazować na tym jupyterze lub nie).\n", + "- model sieci to GRU (o dowolnych parametrach) + CRF w pytorchu korzystając z modułu CRF z poprzednich zajęć- - stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n", + "- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.65\n", + "termin 22.06, 60 punktów, za najlepszy wynik- 100 punktów\n", + " " + ] + } + ], + "metadata": { + "author": "Jakub Pokrywka", + "email": "kubapok@wmi.amu.edu.pl", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "lang": "pl", + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.4" + }, + "subtitle": "11.NER RNN[ćwiczenia]", + "title": "Ekstrakcja informacji", + "year": "2021" + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/cw/11_NER_RNN_ODPOWIEDZI.ipynb b/cw/11_NER_RNN_ODPOWIEDZI.ipynb new file mode 100644 index 0000000..7763e0c --- /dev/null +++ b/cw/11_NER_RNN_ODPOWIEDZI.ipynb @@ -0,0 +1,1047 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n", + "
\n", + "

Ekstrakcja informacji

\n", + "

11. NER RNN [ćwiczenia]

\n", + "

Jakub Pokrywka (2021)

\n", + "
\n", + "\n", + "![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Podejście softmax z embeddingami na przykładzie NER" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import gensim\n", + "import torch\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "from sklearn.model_selection import train_test_split\n", + "\n", + "from datasets import load_dataset\n", + "import torchtext\n", + "#from torchtext.vocab import vocab\n", + "from collections import Counter\n", + "\n", + "from sklearn.datasets import fetch_20newsgroups\n", + "# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n", + "\n", + "from sklearn.feature_extraction.text import TfidfVectorizer\n", + "from sklearn.metrics import accuracy_score\n", + "\n", + "from tqdm.notebook import tqdm\n", + "\n", + "import torch" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Reusing dataset conll2003 (/home/kuba/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/63f4ebd1bcb7148b1644497336fd74643d4ce70123334431a3c053b7ee4e96ee)\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7c9a8ca324914c40b7606ab8cd487df2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3 [00:00', '', '', ''])\n", + " vocab.set_default_index(0)\n", + " return vocab" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "vocab = build_vocab(dataset['train']['tokens'])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "21" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "vocab['on']" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def data_process(dt):\n", + " return [ torch.tensor([vocab['']] +[vocab[token] for token in document ] + [vocab['']], dtype = torch.long) for document in dt]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def labels_process(dt):\n", + " return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "train_tokens_ids = data_process(dataset['train']['tokens'])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "test_tokens_ids = data_process(dataset['test']['tokens'])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "validation_tokens_ids = data_process(dataset['validation']['tokens'])" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "train_labels = labels_process(dataset['train']['ner_tags'])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "validation_labels = labels_process(dataset['validation']['ner_tags'])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "test_labels = labels_process(dataset['test']['ner_tags'])" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([ 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 3])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_tokens_ids[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'id': '0',\n", + " 'tokens': ['EU',\n", + " 'rejects',\n", + " 'German',\n", + " 'call',\n", + " 'to',\n", + " 'boycott',\n", + " 'British',\n", + " 'lamb',\n", + " '.'],\n", + " 'pos_tags': [22, 42, 16, 21, 35, 37, 16, 21, 7],\n", + " 'chunk_tags': [11, 21, 11, 12, 21, 22, 11, 12, 0],\n", + " 'ner_tags': [3, 0, 7, 0, 0, 0, 7, 0, 0]}" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset['train'][0]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "tensor([0, 3, 0, 7, 0, 0, 0, 7, 0, 0, 0])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "train_labels[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "def get_scores(y_true, y_pred):\n", + " acc_score = 0\n", + " tp = 0\n", + " fp = 0\n", + " selected_items = 0\n", + " relevant_items = 0 \n", + "\n", + " for p,t in zip(y_pred, y_true):\n", + " if p == t:\n", + " acc_score +=1\n", + "\n", + " if p > 0 and p == t:\n", + " tp +=1\n", + "\n", + " if p > 0:\n", + " selected_items += 1\n", + "\n", + " if t > 0 :\n", + " relevant_items +=1\n", + "\n", + " \n", + " \n", + " if selected_items == 0:\n", + " precision = 1.0\n", + " else:\n", + " precision = tp / selected_items\n", + " \n", + " \n", + " if relevant_items == 0:\n", + " recall = 1.0\n", + " else:\n", + " recall = tp / relevant_items\n", + " \n", + " \n", + " if precision + recall == 0.0 :\n", + " f1 = 0.0\n", + " else:\n", + " f1 = 2* precision * recall / (precision + recall)\n", + "\n", + " return precision, recall, f1" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "num_tags = max([max(x) for x in dataset['train']['ner_tags'] if x]) + 1 " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "class LSTM(torch.nn.Module):\n", + "\n", + " def __init__(self):\n", + " super(LSTM, self).__init__()\n", + " self.emb = torch.nn.Embedding(len(vocab.get_itos()),100)\n", + " self.rec = torch.nn.LSTM(100, 256, 1, batch_first = True)\n", + " self.fc1 = torch.nn.Linear( 256 , 9)\n", + "\n", + " def forward(self, x):\n", + " emb = torch.relu(self.emb(x))\n", + " \n", + " lstm_output, (h_n, c_n) = self.rec(emb)\n", + " \n", + " out_weights = self.fc1(lstm_output)\n", + "\n", + " return out_weights" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "lstm = LSTM()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "criterion = torch.nn.CrossEntropyLoss()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "optimizer = torch.optim.Adam(lstm.parameters())" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "def eval_model(dataset_tokens, dataset_labels, model):\n", + " Y_true = []\n", + " Y_pred = []\n", + " for i in tqdm(range(len(dataset_labels))):\n", + " batch_tokens = dataset_tokens[i].unsqueeze(0)\n", + " tags = list(dataset_labels[i].numpy())\n", + " Y_true += tags\n", + " \n", + " Y_batch_pred_weights = model(batch_tokens).squeeze(0)\n", + " Y_batch_pred = torch.argmax(Y_batch_pred_weights,1)\n", + " Y_pred += list(Y_batch_pred.numpy())\n", + " \n", + "\n", + " return get_scores(Y_true, Y_pred)\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "NUM_EPOCHS = 5" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "59e268fa2b29414fb6306ec4ee44d51f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/500 [00:00 1 ?\n", + "- co zrobić, żeby sieć uwzględniała następne tokeny, a nie tylko poprzednie?\n", + "- w jaki sposób wykorzystać taką sieć do zadania zwykłej klasyfikacji?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Zadanie na zajęcia ( 20 minut)\n", + "\n", + "zmodyfikować sieć tak, żeby była używała dwuwarstwowej, dwukierunkowej warstwy GRU oraz dropoutu. Dropout ma nałożony na embeddingi.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "class GRU(torch.nn.Module):\n", + "\n", + " def __init__(self):\n", + " super(GRU, self).__init__()\n", + " self.emb = torch.nn.Embedding(len(vocab.get_itos()),100)\n", + " self.dropout = torch.nn.Dropout(0.2)\n", + " self.rec = torch.nn.GRU(100, 256, 2, batch_first = True, bidirectional = True)\n", + " self.fc1 = torch.nn.Linear(2* 256 , 9)\n", + " \n", + " def forward(self, x):\n", + " emb = torch.relu(self.emb(x))\n", + " emb = self.dropout(emb)\n", + " \n", + " gru_output, h_n = self.rec(emb)\n", + " \n", + " out_weights = self.fc1(gru_output)\n", + "\n", + " return out_weights" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "gru = GRU()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "criterion = torch.nn.CrossEntropyLoss()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "optimizer = torch.optim.Adam(gru.parameters())" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "NUM_EPOCHS = 5" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "109e0891142545ee8315c040cb231fb2", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/500 [00:00