{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n", "
\n", "

Ekstrakcja informacji

\n", "

6. Klasyfikacja [ćwiczenia]

\n", "

Jakub Pokrywka (2021)

\n", "
\n", "\n", "![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Zajęcia klasyfikacja" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Zbiór kleister" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pathlib\n", "from collections import Counter\n", "from sklearn.metrics import *" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "KLEISTER_PATH = pathlib.Path('/home/kuba/Syncthing/przedmioty/2020-02/IE/applica/kleister-nda')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Pytanie\n", "\n", "Czy jurysdykcja musi być zapisana explicite w umowie?" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def get_expected_jurisdiction(filepath):\n", " dataset_expected_jurisdiction = []\n", " with open(filepath,'r') as train_expected_file:\n", " for line in train_expected_file:\n", " key_values = line.rstrip('\\n').split(' ')\n", " jurisdiction = None\n", " for key_value in key_values:\n", " key, value = key_value.split('=')\n", " if key == 'jurisdiction':\n", " jurisdiction = value\n", " if jurisdiction is None:\n", " jurisdiction = 'NONE'\n", " dataset_expected_jurisdiction.append(jurisdiction)\n", " return dataset_expected_jurisdiction" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "train_expected_jurisdiction = get_expected_jurisdiction(KLEISTER_PATH/'train'/'expected.tsv')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "dev_expected_jurisdiction = get_expected_jurisdiction(KLEISTER_PATH/'dev-0'/'expected.tsv')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "254" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(train_expected_jurisdiction)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "'NONE' in train_expected_jurisdiction" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "31" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(set(train_expected_jurisdiction))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Czy wszystkie stany muszą występować w zbiorze trenującym w zbiorze kleister?\n", "\n", "https://en.wikipedia.org/wiki/U.S._state\n", "\n", "### Jaki jest baseline?" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "train_counter = Counter(train_expected_jurisdiction)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[('New_York', 43),\n", " ('Delaware', 39),\n", " ('California', 32),\n", " ('Massachusetts', 15),\n", " ('Texas', 13),\n", " ('Illinois', 10),\n", " ('Oregon', 9),\n", " ('Florida', 9),\n", " ('Pennsylvania', 9),\n", " ('Missouri', 9),\n", " ('Ohio', 8),\n", " ('New_Jersey', 7),\n", " ('Georgia', 6),\n", " ('Indiana', 5),\n", " ('Nevada', 5),\n", " ('Colorado', 4),\n", " ('Virginia', 4),\n", " ('Washington', 4),\n", " ('Michigan', 3),\n", " ('Minnesota', 3),\n", " ('Connecticut', 2),\n", " ('Wisconsin', 2),\n", " ('Maine', 2),\n", " ('North_Carolina', 2),\n", " ('Kansas', 2),\n", " ('Utah', 2),\n", " ('Iowa', 1),\n", " ('Idaho', 1),\n", " ('South_Dakota', 1),\n", " ('South_Carolina', 1),\n", " ('Rhode_Island', 1)]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_counter.most_common(100)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "most_common_answer = train_counter.most_common(100)[0][0]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'New_York'" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "most_common_answer" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "dev_predictions_jurisdiction = [most_common_answer] * len(dev_expected_jurisdiction)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": true }, "outputs": [], "source": [ "dev_expected_jurisdiction" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "accuracy: 0.14457831325301204\n" ] } ], "source": [ "counter = 0 \n", "for pred, exp in zip(dev_predictions_jurisdiction, dev_expected_jurisdiction):\n", " if pred == exp:\n", " counter +=1\n", "print('accuracy: ', counter/len(dev_predictions_jurisdiction))" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.14457831325301204" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "accuracy_score(dev_predictions_jurisdiction, dev_expected_jurisdiction)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Co jeżeli nazwy klas nie występują explicite w zbiorach?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "https://git.wmi.amu.edu.pl/kubapok/paranormal-or-skeptic-ISI-public\n", " \n", "https://git.wmi.amu.edu.pl/kubapok/sport-text-classification-ball-ISI-public" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "SPORT_PATH='/home/kuba/Syncthing/przedmioty/2020-02/ISI/zajecia6_klasyfikacja/repos/sport-text-classification-ball'\n", "\n", "SPORT_TRAIN=$SPORT_PATH/train/train.tsv.gz\n", " \n", "SPORT_DEV_EXP=$SPORT_PATH/dev-0/expected.tsv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### jaki jest baseline dla sport classification ball?\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "zcat $SPORT_TRAIN | awk '{print $1}' | wc -l" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "zcat $SPORT_TRAIN | awk '{print $1}' | grep 1 | wc -l" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "cat $SPORT_DEV_EXP | wc -l\n", "\n", "grep 1 $SPORT_DEV_EXP | wc -l" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sprytne podejście do klasyfikacji tekstu? Naiwny bayess" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sklearn.datasets import fetch_20newsgroups\n", "# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n", "\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "import numpy as np\n", "import sklearn.metrics\n", "import gensim" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "newsgroups = fetch_20newsgroups()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "newsgroups_text = newsgroups['data']" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "newsgroups_text_tokenized = [list(set(gensim.utils.tokenize(x, lowercase = True))) for x in newsgroups_text]" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "From: lerxst@wam.umd.edu (where's my thing)\n", "Subject: WHAT car is this!?\n", "Nntp-Posting-Host: rac3.wam.umd.edu\n", "Organization: University of Maryland, College Park\n", "Lines: 15\n", "\n", " I was wondering if anyone out there could enlighten me on this car I saw\n", "the other day. It was a 2-door sports car, looked to be from the late 60s/\n", "early 70s. It was called a Bricklin. The doors were really small. In addition,\n", "the front bumper was separate from the rest of the body. This is \n", "all I know. If anyone can tellme a model name, engine specs, years\n", "of production, where this car is made, history, or whatever info you\n", "have on this funky looking car, please e-mail.\n", "\n", "Thanks,\n", "- IL\n", " ---- brought to you by your neighborhood Lerxst ----\n", "\n", "\n", "\n", "\n", "\n" ] } ], "source": [ "print(newsgroups_text[0])" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['lerxst', 'on', 'be', 'name', 'brought', 'late', 'front', 'umd', 'bumper', 'door', 'there', 'subject', 'day', 'early', 'history', 'me', 'neighborhood', 'university', 'mail', 'doors', 'by', 'funky', 'if', 'engine', 'know', 'years', 'maryland', 'your', 'rest', 'is', 'info', 'body', 'have', 'tellme', 'out', 'anyone', 'small', 'wam', 'il', 'organization', 'thanks', 'park', 'made', 'whatever', 'other', 'specs', 'wondering', 'lines', 'from', 'was', 'a', 'what', 'the', 's', 'or', 'please', 'all', 'rac', 'i', 'looked', 'really', 'edu', 'where', 'to', 'e', 'my', 'it', 'car', 'addition', 'can', 'of', 'production', 'in', 'saw', 'separate', 'you', 'thing', 'posting', 'bricklin', 'could', 'enlighten', 'nntp', 'model', 'were', 'host', 'looking', 'this', 'college', 'sports', 'called']\n" ] } ], "source": [ "print(newsgroups_text_tokenized[0])" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "Y = newsgroups['target']" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([7, 4, 4, ..., 3, 1, 8])" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "Y_names = newsgroups['target_names']" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['alt.atheism',\n", " 'comp.graphics',\n", " 'comp.os.ms-windows.misc',\n", " 'comp.sys.ibm.pc.hardware',\n", " 'comp.sys.mac.hardware',\n", " 'comp.windows.x',\n", " 'misc.forsale',\n", " 'rec.autos',\n", " 'rec.motorcycles',\n", " 'rec.sport.baseball',\n", " 'rec.sport.hockey',\n", " 'sci.crypt',\n", " 'sci.electronics',\n", " 'sci.med',\n", " 'sci.space',\n", " 'soc.religion.christian',\n", " 'talk.politics.guns',\n", " 'talk.politics.mideast',\n", " 'talk.politics.misc',\n", " 'talk.religion.misc']" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y_names" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'talk.politics.guns'" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y_names[16]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$P('talk.politics.guns' | 'gun')= ?$ \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "$P(A|B) * P(A) = P(B) * P(B|A)$\n", "\n", "$P(A|B) = \\frac{P(B) * P(B|A)}{P(A)}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$P('talk.politics.guns' | 'gun') * P('gun') = P('gun'|'talk.politics.guns') * P('talk.politics.guns')$\n", "\n", "\n", "$P('talk.politics.guns' | 'gun') = \\frac{P('gun'|'talk.politics.guns') * P('talk.politics.guns')}{P('gun')}$\n", "\n", "\n", "$p1 = P('gun'|'talk.politics.guns')$\n", "\n", "\n", "$p2 = P('talk.politics.guns')$\n", "\n", "\n", "$p3 = P('gun')$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## obliczanie $p1 = P('gun'|'talk.politics.guns')$" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "talk_politics_guns = [x for x,y in zip(newsgroups_text_tokenized,Y) if y == 16]" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "546" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(talk_politics_guns)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "253" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len([x for x in talk_politics_guns if 'gun' in x])" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "p1 = len([x for x in talk_politics_guns if 'gun' in x]) / len(talk_politics_guns)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.4633699633699634" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## obliczanie $p2 = P('talk.politics.guns')$\n" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [], "source": [ "p2 = len(talk_politics_guns) / len(Y)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.048258794414000356" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## obliczanie $p3 = P('gun')$" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [], "source": [ "p3 = len([x for x in newsgroups_text_tokenized if 'gun' in x]) / len(Y)" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.03270284603146544" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## ostatecznie" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.6837837837837839" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "(p1 * p2) / p3" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "def get_prob(index ):\n", " talks_topic = [x for x,y in zip(newsgroups_text_tokenized,Y) if y == index]\n", "\n", " len([x for x in talks_topic if 'gun' in x])\n", "\n", " if len(talks_topic) == 0:\n", " return 0.0\n", " p1 = len([x for x in talks_topic if 'gun' in x]) / len(talks_topic)\n", " p2 = len(talks_topic) / len(Y)\n", " p3 = len([x for x in newsgroups_text_tokenized if 'gun' in x]) / len(Y)\n", "\n", " if p3 == 0:\n", " return 0.0\n", " else: \n", " return (p1 * p2)/ p3\n" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.01622 \t\t alt.atheism\n", "0.00000 \t\t comp.graphics\n", "0.00541 \t\t comp.os.ms-windows.misc\n", "0.01892 \t\t comp.sys.ibm.pc.hardware\n", "0.00270 \t\t comp.sys.mac.hardware\n", "0.00000 \t\t comp.windows.x\n", "0.01351 \t\t misc.forsale\n", "0.04054 \t\t rec.autos\n", "0.01892 \t\t rec.motorcycles\n", "0.00270 \t\t rec.sport.baseball\n", "0.00541 \t\t rec.sport.hockey\n", "0.03784 \t\t sci.crypt\n", "0.02973 \t\t sci.electronics\n", "0.00541 \t\t sci.med\n", "0.01622 \t\t sci.space\n", "0.00270 \t\t soc.religion.christian\n", "0.68378 \t\t talk.politics.guns\n", "0.04595 \t\t talk.politics.mideast\n", "0.03784 \t\t talk.politics.misc\n", "0.01622 \t\t talk.religion.misc\n", "1.00000 \t\tsuma\n" ] } ], "source": [ "probs = []\n", "for i in range(len(Y_names)):\n", " probs.append(get_prob(i))\n", " print(\"%.5f\" % get_prob(i),'\\t\\t', Y_names[i])\n", " \n", "print(\"%.5f\" % sum(probs), '\\t\\tsuma',)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [], "source": [ "def get_prob2(index, word ):\n", " talks_topic = [x for x,y in zip(newsgroups_text_tokenized,Y) if y == index]\n", "\n", " len([x for x in talks_topic if word in x])\n", "\n", " if len(talks_topic) == 0:\n", " return 0.0\n", " p1 = len([x for x in talks_topic if word in x]) / len(talks_topic)\n", " p2 = len(talks_topic) / len(Y)\n", " p3 = len([x for x in newsgroups_text_tokenized if word in x]) / len(Y)\n", "\n", " if p3 == 0:\n", " return 0.0\n", " else: \n", " return (p1 * p2)/ p3\n" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.20874 \t\t alt.atheism\n", "0.00850 \t\t comp.graphics\n", "0.00364 \t\t comp.os.ms-windows.misc\n", "0.00850 \t\t comp.sys.ibm.pc.hardware\n", "0.00243 \t\t comp.sys.mac.hardware\n", "0.00485 \t\t comp.windows.x\n", "0.00607 \t\t misc.forsale\n", "0.01092 \t\t rec.autos\n", "0.02063 \t\t rec.motorcycles\n", "0.01456 \t\t rec.sport.baseball\n", "0.01092 \t\t rec.sport.hockey\n", "0.00485 \t\t sci.crypt\n", "0.00364 \t\t sci.electronics\n", "0.00364 \t\t sci.med\n", "0.01092 \t\t sci.space\n", "0.41748 \t\t soc.religion.christian\n", "0.03398 \t\t talk.politics.guns\n", "0.02791 \t\t talk.politics.mideast\n", "0.02549 \t\t talk.politics.misc\n", "0.17233 \t\t talk.religion.misc\n", "1.00000 \t\tsuma\n" ] } ], "source": [ "probs = []\n", "for i in range(len(Y_names)):\n", " probs.append(get_prob2(i,'god'))\n", " print(\"%.5f\" % get_prob2(i,'god'),'\\t\\t', Y_names[i])\n", " \n", "print(\"%.5f\" % sum(probs), '\\t\\tsuma',)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## założenie naiwnego bayesa" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$P(class | word1, word2, word3) = \\frac{P(word1, word2, word3|class) * P(class)}{P(word1, word2, word3)}$\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**przy założeniu o niezależności zmiennych losowych $word1$, $word2$, $word3$**:\n", "\n", "\n", "$P(word1, word2, word3|class) = P(word1|class)* P(word2|class) * P(word3|class)$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**ostatecznie:**\n", "\n", "\n", "$P(class | word1, word2, word3) = \\frac{P(word1|class)* P(word2|class) * P(word3|class) * P(class)}{\\sum_k{P(word1|class_k)* P(word2|class_k) * P(word3|class_k) * P(class_k)}}$\n" ] } ], "metadata": { "author": "Jakub Pokrywka", "email": "kubapok@wmi.amu.edu.pl", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "lang": "pl", "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" }, "subtitle": "6.Klasyfikacja[ćwiczenia]", "title": "Ekstrakcja informacji", "year": "2021" }, "nbformat": 4, "nbformat_minor": 4 }