{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n", "
\n", "

Ekstrakcja informacji

\n", "

10. CRF [ćwiczenia]

\n", "

Jakub Pokrywka (2021)

\n", "
\n", "\n", "![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Podejście softmax z embeddingami na przykładzie NER" ] }, { "cell_type": "markdown", "metadata": { "scrolled": true }, "source": [ "https://pytorch-crf.readthedocs.io/en/stable/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "https://www.aclweb.org/anthology/W03-0419.pdf" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "conda env export -n > environment.yml\n", " \n", " \n", "conda env create -f path/to/environment.yml" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: pytorch-crf in /home/kuba/anaconda3/envs/zajeciaei/lib/python3.10/site-packages (0.7.2)\r\n" ] } ], "source": [ "!pip install pytorch-crf" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import gensim\n", "import torch\n", "import pandas as pd\n", "import seaborn as sns\n", "import torchtext\n", "from sklearn.model_selection import train_test_split\n", "\n", "from datasets import load_dataset\n", "from torchtext.vocab import Vocab\n", "from collections import Counter\n", "\n", "from sklearn.datasets import fetch_20newsgroups\n", "# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n", "\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.metrics import accuracy_score\n", "\n", "from tqdm.notebook import tqdm\n", "\n", "import torch\n", "from torchcrf import CRF" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Reusing dataset conll2003 (/home/kuba/.cache/huggingface/datasets/conll2003/conll2003/1.0.0/63f4ebd1bcb7148b1644497336fd74643d4ce70123334431a3c053b7ee4e96ee)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "960f4cf0de594e48ad7a84740cf301a3", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/3 [00:00', '', '', ''])\n", " vocab.set_default_index(0)\n", " return vocab" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "vocab = build_vocab(dataset['train']['tokens'])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "21" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "vocab['on']" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def data_process(dt):\n", " return [ torch.tensor([vocab['']] +[vocab[token] for token in document ] + [vocab['']], dtype = torch.long) for document in dt]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "def labels_process(dt):\n", " return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "train_tokens_ids = data_process(dataset['train']['tokens'])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "test_tokens_ids = data_process(dataset['test']['tokens'])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "validation_tokens_ids = data_process(dataset['validation']['tokens'])" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "scrolled": true }, "outputs": [], "source": [ "train_labels = labels_process(dataset['train']['ner_tags'])" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "validation_labels = labels_process(dataset['validation']['ner_tags'])" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "test_labels = labels_process(dataset['test']['ner_tags'])" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([ 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 3])" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_tokens_ids[0]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "def get_scores(y_true, y_pred):\n", " acc_score = 0\n", " tp = 0\n", " fp = 0\n", " selected_items = 0\n", " relevant_items = 0 \n", "\n", " for p,t in zip(y_pred, y_true):\n", " if p == t:\n", " acc_score +=1\n", "\n", " if p > 0 and p == t:\n", " tp +=1\n", "\n", " if p > 0:\n", " selected_items += 1\n", "\n", " if t > 0 :\n", " relevant_items +=1\n", "\n", " \n", " \n", " if selected_items == 0:\n", " precision = 1.0\n", " else:\n", " precision = tp / selected_items\n", " \n", " \n", " if relevant_items == 0:\n", " recall = 1.0\n", " else:\n", " recall = tp / relevant_items\n", " \n", " \n", " if precision + recall == 0.0 :\n", " f1 = 0.0\n", " else:\n", " f1 = 2* precision * recall / (precision + recall)\n", "\n", " return precision, recall, f1" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "num_tags = max([max(x) for x in dataset['train']['ner_tags'] if x]) + 1 " ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "class FF(torch.nn.Module):\n", "\n", " def __init__(self,):\n", " super(FF, self).__init__()\n", " self.emb = torch.nn.Embedding(23627,200)\n", " self.fc1 = torch.nn.Linear(200,num_tags)\n", " \n", "\n", " def forward(self, x):\n", " x = self.emb(x)\n", " x = self.fc1(x)\n", " return x" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "ff = FF()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "scrolled": true }, "outputs": [], "source": [ "crf = CRF(num_tags)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "params = list(ff.parameters()) + list(crf.parameters())\n", "\n", "optimizer = torch.optim.Adam(params)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "def eval_model(dataset_tokens, dataset_labels):\n", " Y_true = []\n", " Y_pred = []\n", " ff.eval()\n", " crf.eval()\n", " for i in tqdm(range(len(dataset_labels))):\n", " batch_tokens = dataset_tokens[i]\n", " tags = list(dataset_labels[i].numpy())\n", " emissions = ff(batch_tokens).unsqueeze(1)\n", " Y_pred += crf.decode(emissions)[0]\n", " Y_true += tags\n", "\n", " return get_scores(Y_true, Y_pred)\n", " " ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "NUM_EPOCHS = 4" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "scrolled": false }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "caddabb06f894f529ba7143ce62b8c2e", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/14042 [00:00