{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n", "
\n", "

Ekstrakcja informacji

\n", "

8. Regresja logistyczna [ćwiczenia]

\n", "

Jakub Pokrywka (2021)

\n", "
\n", "\n", "![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Regresja logistyczna" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## import bibliotek" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "scrolled": true }, "outputs": [], "source": [ "import numpy as np\n", "import torch\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "\n", "from sklearn.datasets import fetch_20newsgroups\n", "# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n", "\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.metrics import accuracy_score" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": [ "CATEGORIES = ['soc.religion.christian', 'alt.atheism']" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [], "source": [ "newsgroups_train_dev = fetch_20newsgroups(subset = 'train', categories=CATEGORIES)\n", "newsgroups_test = fetch_20newsgroups(subset = 'test', categories=CATEGORIES)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [], "source": [ "newsgroups_train_dev_text = newsgroups_train_dev['data']\n", "newsgroups_test_text = newsgroups_test['data']" ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [], "source": [ "Y_train_dev = newsgroups_train_dev['target']\n", "Y_test = newsgroups_test['target']" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": [ "newsgroups_train_text, newsgroups_dev_text, Y_train, Y_dev = train_test_split(newsgroups_train_dev_text, Y_train_dev, random_state=42)" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [], "source": [ "Y_names = newsgroups_train_dev['target_names']" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['alt.atheism', 'soc.religion.christian']" ] }, "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y_names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## baseline" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1,\n", " 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0,\n", " 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,\n", " 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,\n", " 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1,\n", " 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0,\n", " 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0,\n", " 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,\n", " 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1,\n", " 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0,\n", " 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0,\n", " 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0,\n", " 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0,\n", " 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0,\n", " 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1,\n", " 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1,\n", " 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1,\n", " 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0,\n", " 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0,\n", " 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1,\n", " 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1,\n", " 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1,\n", " 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1,\n", " 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0,\n", " 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0,\n", " 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0,\n", " 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,\n", " 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n", " 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0,\n", " 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0,\n", " 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0,\n", " 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1,\n", " 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1,\n", " 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1,\n", " 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1,\n", " 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,\n", " 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0])" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y_train" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1 450\n", "0 359\n", "dtype: int64" ] }, "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.value_counts(Y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### train" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.5562422744128553" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "accuracy_score(np.ones_like(Y_train) * 1, Y_train)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### dev" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.5518518518518518" ] }, "execution_count": 62, "metadata": {}, "output_type": "execute_result" } ], "source": [ "accuracy_score(np.ones_like(Y_dev) * 1, Y_dev)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### test" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.5550906555090656" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" } ], "source": [ "accuracy_score(np.ones_like(Y_test) * 1, Y_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### PYTANIE: co jest nie tak z regresją liniową?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Regresja logistyczna" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### wektoryzacja" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [], "source": [ "FEAUTERES = 10_000" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": [ "vectorizer = TfidfVectorizer(max_features=10_000)" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "scrolled": true }, "outputs": [], "source": [ "X_train = vectorizer.fit_transform(newsgroups_train_text)\n", "X_dev = vectorizer.transform(newsgroups_dev_text)\n", "X_test = vectorizer.transform(newsgroups_test_text)" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<717x10000 sparse matrix of type ''\n", "\twith 120739 stored elements in Compressed Sparse Row format>" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_test" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### model - inicjalizacja " ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [], "source": [ "class LogisticRegressionModel(torch.nn.Module):\n", "\n", " def __init__(self):\n", " super(LogisticRegressionModel, self).__init__()\n", " self.fc = torch.nn.Linear(FEAUTERES,1)\n", "\n", " def forward(self, x):\n", " x = self.fc(x)\n", " x = torch.sigmoid(x)\n", " return x" ] }, { "cell_type": "code", "execution_count": 69, "metadata": {}, "outputs": [], "source": [ "lr_model = LogisticRegressionModel()" ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[0.4983],\n", " [0.4978],\n", " [0.5004],\n", " [0.4991],\n", " [0.5014]], grad_fn=)" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lr_model(torch.Tensor(X_train[0:5].astype(np.float32).todense()))" ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "LogisticRegressionModel(\n", " (fc): Linear(in_features=10000, out_features=1, bias=True)\n", ")" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lr_model" ] }, { "cell_type": "code", "execution_count": 72, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Parameter containing:\n", " tensor([[-0.0022, 0.0024, 0.0013, ..., 0.0090, 0.0095, 0.0065]],\n", " requires_grad=True),\n", " Parameter containing:\n", " tensor([0.0043], requires_grad=True)]" ] }, "execution_count": 72, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(lr_model.parameters())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## model - trenowanie" ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [], "source": [ "BATCH_SIZE = 5" ] }, { "cell_type": "code", "execution_count": 74, "metadata": {}, "outputs": [], "source": [ "criterion = torch.nn.BCELoss()" ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [], "source": [ "optimizer = torch.optim.SGD(lr_model.parameters(), lr = 0.1)" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "809" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y_train.shape[0]" ] }, { "cell_type": "code", "execution_count": 112, "metadata": { "scrolled": true }, "outputs": [], "source": [ "loss_score = 0\n", "acc_score = 0\n", "items_total = 0\n", "lr_model.train()\n", "for i in range(0, Y_train.shape[0], BATCH_SIZE):\n", " X = X_train[i:i+BATCH_SIZE]\n", " X = torch.tensor(X.astype(np.float32).todense())\n", " Y = Y_train[i:i+BATCH_SIZE]\n", " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n", " Y_predictions = lr_model(X)\n", " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n", " items_total += Y.shape[0] \n", " \n", " optimizer.zero_grad()\n", " loss = criterion(Y_predictions, Y)\n", " loss.backward()\n", " optimizer.step()\n", " \n", "\n", " loss_score += loss.item() * Y.shape[0] " ] }, { "cell_type": "code", "execution_count": 113, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[0.5029],\n", " [0.6063],\n", " [0.5796],\n", " [0.4821]], grad_fn=)" ] }, "execution_count": 113, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y_predictions" ] }, { "cell_type": "code", "execution_count": 114, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[0.],\n", " [1.],\n", " [1.],\n", " [0.]])" ] }, "execution_count": 114, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Y" ] }, { "cell_type": "code", "execution_count": 115, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "673" ] }, "execution_count": 115, "metadata": {}, "output_type": "execute_result" } ], "source": [ "acc_score" ] }, { "cell_type": "code", "execution_count": 116, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "809" ] }, "execution_count": 116, "metadata": {}, "output_type": "execute_result" } ], "source": [ "items_total" ] }, { "cell_type": "code", "execution_count": 117, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "accuracy: 0.8318912237330037\n" ] } ], "source": [ "print(f'accuracy: {acc_score / items_total}')" ] }, { "cell_type": "code", "execution_count": 118, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "BCE loss: 0.551247839174695\n" ] } ], "source": [ "print(f'BCE loss: {loss_score / items_total}')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### model - ewaluacja" ] }, { "cell_type": "code", "execution_count": 119, "metadata": {}, "outputs": [], "source": [ "def get_loss_acc(model, X_dataset, Y_dataset):\n", " loss_score = 0\n", " acc_score = 0\n", " items_total = 0\n", " model.eval()\n", " for i in range(0, Y_dataset.shape[0], BATCH_SIZE):\n", " X = X_dataset[i:i+BATCH_SIZE]\n", " X = torch.tensor(X.astype(np.float32).todense())\n", " Y = Y_dataset[i:i+BATCH_SIZE]\n", " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n", " Y_predictions = model(X)\n", " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n", " items_total += Y.shape[0] \n", "\n", " loss = criterion(Y_predictions, Y)\n", "\n", " loss_score += loss.item() * Y.shape[0] \n", " return (loss_score / items_total), (acc_score / items_total)" ] }, { "cell_type": "code", "execution_count": 120, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0.5396295055765451, 0.7935723114956736)" ] }, "execution_count": 120, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_loss_acc(lr_model, X_train, Y_train)" ] }, { "cell_type": "code", "execution_count": 121, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0.5654726171935046, 0.7407407407407407)" ] }, "execution_count": 121, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_loss_acc(lr_model, X_dev, Y_dev)" ] }, { "cell_type": "code", "execution_count": 122, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0.5901291338386562, 0.6847977684797768)" ] }, "execution_count": 122, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_loss_acc(lr_model, X_test, Y_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### wagi modelu" ] }, { "cell_type": "code", "execution_count": 123, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Parameter containing:\n", " tensor([[ 0.0749, -0.0687, 0.0117, ..., 0.0045, 0.0223, -0.0058]],\n", " requires_grad=True),\n", " Parameter containing:\n", " tensor([0.1239], requires_grad=True)]" ] }, "execution_count": 123, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(lr_model.parameters())" ] }, { "cell_type": "code", "execution_count": 124, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([ 0.0749, -0.0687, 0.0117, ..., 0.0045, 0.0223, -0.0058],\n", " grad_fn=)" ] }, "execution_count": 124, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(lr_model.parameters())[0][0]" ] }, { "cell_type": "code", "execution_count": 125, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.return_types.topk(\n", "values=tensor([0.6079, 0.4051, 0.3739, 0.3648, 0.3574, 0.3527, 0.3471, 0.3414, 0.3330,\n", " 0.3024, 0.2906, 0.2766, 0.2705, 0.2418, 0.2389, 0.2333, 0.2230, 0.2156,\n", " 0.2151, 0.2129], grad_fn=),\n", "indices=tensor([8942, 6336, 4039, 1857, 9709, 9056, 1852, 5002, 1865, 7820, 803, 3558,\n", " 4306, 4259, 8208, 1046, 1855, 4285, 6481, 130]))" ] }, "execution_count": 125, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.topk(list(lr_model.parameters())[0][0], 20)" ] }, { "cell_type": "code", "execution_count": 126, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the\n", "of\n", "god\n", "christians\n", "we\n", "to\n", "christ\n", "jesus\n", "church\n", "rutgers\n", "and\n", "faith\n", "hell\n", "he\n", "sin\n", "athos\n", "christian\n", "heaven\n", "our\n", "1993\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/home/kuba/anaconda3/envs/zajeciaei/lib/python3.10/site-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_feature_names is deprecated in 1.0 and will be removed in 1.2. Please use get_feature_names_out instead.\n", " warnings.warn(msg, category=FutureWarning)\n" ] } ], "source": [ "for i in torch.topk(list(lr_model.parameters())[0][0], 20)[1]:\n", " print(vectorizer.get_feature_names()[i])" ] }, { "cell_type": "code", "execution_count": 127, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.return_types.topk(\n", "values=tensor([-0.7723, -0.5291, -0.4631, -0.4499, -0.4225, -0.4144, -0.4041, -0.4019,\n", " -0.3622, -0.3604, -0.3442, -0.3228, -0.3218, -0.3179, -0.3162, -0.3127,\n", " -0.3034, -0.3027, -0.2983, -0.2750], grad_fn=),\n", "indices=tensor([5119, 1627, 8096, 5420, 6194, 5946, 4436, 6901, 1991, 4925, 3116, 4926,\n", " 9906, 1036, 8329, 7869, 4959, 8800, 6289, 7921]))" ] }, "execution_count": 127, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.topk(list(lr_model.parameters())[0][0], 20, largest = False)" ] }, { "cell_type": "code", "execution_count": 128, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "keith\n", "caltech\n", "sgi\n", "livesey\n", "nntp\n", "morality\n", "host\n", "posting\n", "com\n", "islam\n", "edu\n", "islamic\n", "wpd\n", "atheism\n", "solntze\n", "sandvik\n", "jaeger\n", "system\n", "objective\n", "schneider\n" ] } ], "source": [ "for i in torch.topk(list(lr_model.parameters())[0][0], 20, largest = False)[1]:\n", " print(vectorizer.get_feature_names()[i])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### sieć neuronowa" ] }, { "cell_type": "code", "execution_count": 129, "metadata": {}, "outputs": [], "source": [ "class NeuralNetworkModel(torch.nn.Module):\n", "\n", " def __init__(self):\n", " super(NeuralNetworkModel, self).__init__()\n", " self.fc1 = torch.nn.Linear(FEAUTERES,500)\n", " self.fc2 = torch.nn.Linear(500,1)\n", "\n", " def forward(self, x):\n", " x = self.fc1(x)\n", " x = torch.relu(x)\n", " x = self.fc2(x)\n", " x = torch.sigmoid(x)\n", " return x" ] }, { "cell_type": "code", "execution_count": 130, "metadata": {}, "outputs": [], "source": [ "nn_model = NeuralNetworkModel()" ] }, { "cell_type": "code", "execution_count": 131, "metadata": {}, "outputs": [], "source": [ "BATCH_SIZE = 5" ] }, { "cell_type": "code", "execution_count": 132, "metadata": {}, "outputs": [], "source": [ "criterion = torch.nn.BCELoss()" ] }, { "cell_type": "code", "execution_count": 133, "metadata": {}, "outputs": [], "source": [ "optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.1)" ] }, { "cell_type": "code", "execution_count": 134, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "0" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.6796266682657824, 0.5562422744128553)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.6829625014905576, 0.5518518518518518)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "1" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.6543819982056565, 0.5562422744128553)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.662480209712629, 0.5518518518518518)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "2" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.5808140672328888, 0.7132262051915945)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.6008473800288306, 0.6555555555555556)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "3" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.4458613999657637, 0.9048207663782447)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.48269164175898943, 0.8481481481481481)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "4" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.3061209664080287, 0.9567367119901112)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(0.3538406518874345, 0.9074074074074074)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for epoch in range(5):\n", " loss_score = 0\n", " acc_score = 0\n", " items_total = 0\n", " nn_model.train()\n", " for i in range(0, Y_train.shape[0], BATCH_SIZE):\n", " X = X_train[i:i+BATCH_SIZE]\n", " X = torch.tensor(X.astype(np.float32).todense())\n", " Y = Y_train[i:i+BATCH_SIZE]\n", " Y = torch.tensor(Y.astype(np.float32)).reshape(-1,1)\n", " Y_predictions = nn_model(X)\n", " acc_score += torch.sum((Y_predictions > 0.5) == Y).item()\n", " items_total += Y.shape[0] \n", "\n", " optimizer.zero_grad()\n", " loss = criterion(Y_predictions, Y)\n", " loss.backward()\n", " optimizer.step()\n", "\n", "\n", " loss_score += loss.item() * Y.shape[0] \n", "\n", " display(epoch)\n", " display(get_loss_acc(nn_model, X_train, Y_train))\n", " display(get_loss_acc(nn_model, X_dev, Y_dev))" ] }, { "cell_type": "code", "execution_count": 135, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(0.4221827702666925, 0.8619246861924686)" ] }, "execution_count": 135, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_loss_acc(nn_model, X_test, Y_test)" ] } ], "metadata": { "author": "Jakub Pokrywka", "email": "kubapok@wmi.amu.edu.pl", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "lang": "pl", "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" }, "subtitle": "8.Regresja logistyczna[ćwiczenia]", "title": "Ekstrakcja informacji", "year": "2021" }, "nbformat": 4, "nbformat_minor": 4 }