153 lines
1.9 KiB
Python
153 lines
1.9 KiB
Python
|
#!/usr/bin/env python
|
||
|
# coding: utf-8
|
||
|
|
||
|
# In[1]:
|
||
|
|
||
|
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
from pathlib import Path
|
||
|
import seaborn as sns
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
from sklearn.linear_model import LinearRegression
|
||
|
|
||
|
|
||
|
# ## TRENING
|
||
|
|
||
|
# In[2]:
|
||
|
|
||
|
|
||
|
NAMES = ["Price","Mileage","Year","Brand","EngineType","EngineCapacity"]
|
||
|
TRAIN_BASE = pd.read_csv("train/train.tsv", sep ='\t', names=NAMES)
|
||
|
|
||
|
|
||
|
# In[3]:
|
||
|
|
||
|
|
||
|
Y_TRAIN = np.array(TRAIN_BASE["Price"])
|
||
|
X_TRAIN = np.array(TRAIN_BASE[["Mileage","Year","EngineCapacity"]])
|
||
|
|
||
|
|
||
|
# In[4]:
|
||
|
|
||
|
|
||
|
MODEL = LinearRegression().fit(X_TRAIN,Y_TRAIN)
|
||
|
|
||
|
|
||
|
# ## DEV-0
|
||
|
|
||
|
# In[5]:
|
||
|
|
||
|
|
||
|
NAMES = ["Mileage","Year","Brand","EngineType","EngineCapacity"]
|
||
|
FILE_BASE = pd.read_csv("dev-0/in.tsv", sep ='\t', names=NAMES)
|
||
|
|
||
|
|
||
|
# In[6]:
|
||
|
|
||
|
|
||
|
X_TEST = np.array(FILE_BASE[["Mileage","Year","EngineCapacity"]])
|
||
|
|
||
|
|
||
|
# In[7]:
|
||
|
|
||
|
|
||
|
Y_TEST = MODEL.predict(X_TEST)
|
||
|
|
||
|
|
||
|
# In[8]:
|
||
|
|
||
|
|
||
|
VALUES = np.array2string(Y_TEST, precision=5, separator='\n',suppress_small=True)
|
||
|
|
||
|
|
||
|
# In[9]:
|
||
|
|
||
|
|
||
|
VALUES = VALUES.split(".\n")
|
||
|
|
||
|
|
||
|
# In[10]:
|
||
|
|
||
|
|
||
|
OUTFILE = open("dev-0/out.tsv", "w")
|
||
|
|
||
|
|
||
|
# In[11]:
|
||
|
|
||
|
|
||
|
for x in VALUES:
|
||
|
RESULT = x.replace(" ","")
|
||
|
RESULT = RESULT.replace("[","")
|
||
|
RESULT = RESULT.replace("]","")
|
||
|
OUTFILE.write(str(RESULT))
|
||
|
|
||
|
|
||
|
# In[12]:
|
||
|
|
||
|
|
||
|
OUTFILE.close()
|
||
|
|
||
|
|
||
|
# ## TEST A
|
||
|
|
||
|
# In[13]:
|
||
|
|
||
|
|
||
|
NAMES = ["Mileage","Year","Brand","EngineType","EngineCapacity"]
|
||
|
FILE_BASE = pd.read_csv("test-A/in.tsv", sep ='\t', names=NAMES)
|
||
|
|
||
|
|
||
|
# In[14]:
|
||
|
|
||
|
|
||
|
X_TEST = np.array(FILE_BASE[["Mileage","Year","EngineCapacity"]])
|
||
|
|
||
|
|
||
|
# In[15]:
|
||
|
|
||
|
|
||
|
Y_TEST = MODEL.predict(X_TEST)
|
||
|
|
||
|
|
||
|
# In[16]:
|
||
|
|
||
|
|
||
|
VALUES = np.array2string(Y_TEST, precision=5, separator='\n',suppress_small=True)
|
||
|
|
||
|
|
||
|
# In[17]:
|
||
|
|
||
|
|
||
|
VALUES = VALUES.split(".\n")
|
||
|
|
||
|
|
||
|
# In[18]:
|
||
|
|
||
|
|
||
|
OUTFILE = open("test-A/out.tsv", "w")
|
||
|
|
||
|
|
||
|
# In[19]:
|
||
|
|
||
|
|
||
|
for x in VALUES:
|
||
|
RESULT = x.replace(" ","")
|
||
|
RESULT = RESULT.replace("[","")
|
||
|
RESULT = RESULT.replace("]","")
|
||
|
OUTFILE.write(str(RESULT) )
|
||
|
|
||
|
|
||
|
# In[20]:
|
||
|
|
||
|
|
||
|
OUTFILE.close()
|
||
|
|
||
|
|
||
|
# In[ ]:
|
||
|
|
||
|
|
||
|
|
||
|
|