preprocesing

This commit is contained in:
Maciej Sobkowiak 2021-05-18 23:52:46 +02:00
parent 68492e3dbb
commit fc12d3b07a

61
main.py
View File

@ -1,12 +1,59 @@
import pandas as pd
import matplotlib.pyplot as plt
labels = ["mileage", "year", "brand", "engine_type", "engine_capacity"]
# Read column names
col_names = []
with open('names') as f:
col_names = f.read().strip().split('\t')
# Read data
dev = pd.read_table('dev-0/in.tsv', error_bad_lines=False, header=None)
test = pd.read_table('test-A/in.tsv', error_bad_lines=False, header=None)
test_expected = pd.read_table(
'dev-0/expected.tsv', error_bad_lines=False, header=None)
train = pd.read_table('train/train.tsv', error_bad_lines=False, header=None)
dev = pd.read_table('dev-0/in.tsv', error_bad_lines=False,
header=None, names=col_names[1:])
test = pd.read_table('test-A/in.tsv', error_bad_lines=False,
header=None, names=col_names[1:])
train = pd.read_table('train/train.tsv', error_bad_lines=False,
header=None, names=col_names)
test_expected = pd.read_table('dev-0/expected.tsv', error_bad_lines=False,
header=None)
print(dev)
# Create dummies for brand
train = pd.get_dummies(train, columns=['engineType'])
# Sprawdzanie ile jest odstających wartości dla price
fig, ax = plt.subplots(1, 2)
fig.set_figheight(15)
fig.set_figwidth(20)
ax[0].boxplot(train['price'])
ax[0].set_title('price')
ax[1].boxplot(train['mileage'])
ax[1].set_title('mileage')
plt.show()
# Usunięcie odstających wartości
priceMin = 0
for price in train['price']:
if price < 1000:
priceMin += 1
print("Price min cut: " + str(priceMin))
priceMax = 0
for price in train['price']:
if price > 1000000:
priceMin += 1
print("Price max cut: " + str(priceMax))
mileageMin = 0
for m in train['mileage']:
if m < 100:
mileageMin += 1
print("Mileage min cut: " + str(mileageMin))
train = train.loc[(train['price'] > 1000)]
train = train.loc[(train['mileage'] > 100)]
# Split train set to X and Y
X = train.loc[:, train.columns != 'price']
Y = train['price']
# print(train)
# print(col_names)