Compare commits
2 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
f7d2d56f0c | ||
|
f8dda8b786 |
1000
dev-0/out.tsv
Normal file
1000
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
43
skrypt-dev-0.py
Normal file
43
skrypt-dev-0.py
Normal file
@ -0,0 +1,43 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy.sparse import data
|
||||
from sklearn import linear_model
|
||||
from sklearn import preprocessing
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn import linear_model
|
||||
import csv
|
||||
import pandas as pd
|
||||
|
||||
regression = linear_model.LinearRegression()
|
||||
|
||||
train_file = pd.read_csv('train/train.tsv', delimiter='\t', names=['price', 'mileage', 'year', 'brand', 'engineType', 'engineCapacity'])
|
||||
train_data_frame = pd.DataFrame(train_file, columns=['price', 'mileage', 'year', 'brand', 'engineType', 'engineCapacity'])
|
||||
|
||||
Y = train_data_frame[['price']]
|
||||
X = train_data_frame[['year', 'mileage', 'engineCapacity']]
|
||||
|
||||
regression.fit(X, Y)
|
||||
|
||||
in_file = pd.read_csv('dev-0/in.tsv', delimiter='\t', names=['mileage', 'year', 'brand', 'engineType', 'engineCapacity'])
|
||||
in_data_frame = pd.DataFrame(in_file, columns=['mileage', 'year', 'brand', 'engineType', 'engineCapacity'])
|
||||
|
||||
reshape = in_data_frame[['year', 'mileage', 'engineCapacity']]
|
||||
|
||||
y_predict = regression.predict(reshape)
|
||||
y_predict = np.concatenate(y_predict)
|
||||
|
||||
|
||||
labels = np.array2string(y_predict, separator='\n', suppress_small=True)
|
||||
|
||||
file_out = open("dev-0/out.tsv", 'w')
|
||||
file_out.write(labels[1:-1])
|
||||
|
||||
with open("dev-0/out.tsv", 'r') as fix_space:
|
||||
lines = fix_space.readlines()
|
||||
|
||||
lines = [line.replace(' ', '') for line in lines]
|
||||
lines = [line.replace('[', '') for line in lines]
|
||||
lines = [line.replace(']', '') for line in lines]
|
||||
with open("dev-0/out.tsv", 'w') as fix_space:
|
||||
fix_space.writelines(lines)
|
41
skrypt-test-a.py
Normal file
41
skrypt-test-a.py
Normal file
@ -0,0 +1,41 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy.sparse import data
|
||||
from sklearn import linear_model
|
||||
from sklearn import preprocessing
|
||||
from sklearn.pipeline import make_pipeline
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn import linear_model
|
||||
import csv
|
||||
import pandas as pd
|
||||
|
||||
regression = linear_model.LinearRegression()
|
||||
|
||||
train_file = pd.read_csv('train/train.tsv', delimiter='\t', names=['price', 'mileage', 'year', 'brand', 'engineType', 'engineCapacity'])
|
||||
train_data_frame = pd.DataFrame(train_file, columns=['price', 'mileage', 'year', 'brand', 'engineType', 'engineCapacity'])
|
||||
|
||||
Y = train_data_frame[['price']]
|
||||
X = train_data_frame[['year', 'mileage', 'engineCapacity']]
|
||||
|
||||
regression.fit(X, Y)
|
||||
|
||||
in_file = pd.read_csv('test-A/in.tsv', delimiter='\t', names=['mileage', 'year', 'brand', 'engineType', 'engineCapacity'])
|
||||
in_data_frame = pd.DataFrame(in_file, columns=['mileage', 'year', 'brand', 'engineType', 'engineCapacity'])
|
||||
|
||||
reshape = in_data_frame[['year', 'mileage', 'engineCapacity']]
|
||||
|
||||
y_predict = regression.predict(reshape)
|
||||
y_predict = np.concatenate(y_predict)
|
||||
|
||||
|
||||
labels = np.array2string(y_predict, separator='\n', suppress_small=True)
|
||||
|
||||
file_out = open("test-A/out.tsv", 'w')
|
||||
file_out.write(labels[1:-1])
|
||||
|
||||
with open("test-A/out.tsv", 'r') as fix_space:
|
||||
lines = fix_space.readlines()
|
||||
|
||||
lines = [line.replace(' ', '') for line in lines]
|
||||
with open("test-A/out.tsv", 'w') as fix_space:
|
||||
fix_space.writelines(lines)
|
1000
test-A/out.tsv
Normal file
1000
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user