Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
6c4fe7fbb8 |
1000
dev-0/out.tsv
Normal file
1000
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
42
solution.py
Normal file
42
solution.py
Normal file
@ -0,0 +1,42 @@
|
||||
import numpy
|
||||
import pandas
|
||||
import sys
|
||||
from sklearn.linear_model import LinearRegression
|
||||
|
||||
TRAIN_URL = "train/train.tsv"
|
||||
TEST_A = "test-A"
|
||||
DEV_0 = "dev-0"
|
||||
|
||||
def get_trained_model(data):
|
||||
x = numpy.array(data.get('x')).reshape(-1, 1)
|
||||
y = numpy.array(data.get('y')).reshape(-1, 1)
|
||||
m = LinearRegression()
|
||||
m.fit(x, y)
|
||||
return m
|
||||
|
||||
|
||||
def prepare_model():
|
||||
csv = pandas.read_csv(TRAIN_URL, sep='\t', header=None, index_col=None)
|
||||
data = {'x': csv[2].tolist(), 'y': csv[0].tolist()}
|
||||
model = get_trained_model(data)
|
||||
return model
|
||||
|
||||
|
||||
def calculate_prediction(path, prepared_model):
|
||||
data_frame = pandas.read_csv(path + '/in.tsv', sep='\t', header=None, index_col=None)
|
||||
input_array = numpy.array(data_frame[1].tolist()).reshape(-1, 1)
|
||||
prediction = prepared_model.predict(input_array)
|
||||
numpy.savetxt(path + "/out.tsv", prediction, fmt="%d", delimiter='\n')
|
||||
|
||||
|
||||
def predict_dev_zero(prepared_model):
|
||||
calculate_prediction(DEV_0, prepared_model)
|
||||
|
||||
|
||||
def predict_test_a(prepared_model):
|
||||
calculate_prediction(TEST_A, prepared_model)
|
||||
|
||||
|
||||
prepared_model = prepare_model()
|
||||
predict_dev_zero(prepared_model)
|
||||
predict_test_a(prepared_model)
|
1000
test-A/out.tsv
Normal file
1000
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user