{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "from pathlib import Path\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "from sklearn.linear_model import LinearRegression" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## TRENING" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "NAMES = [\"Price\",\"Mileage\",\"Year\",\"Brand\",\"EngineType\",\"EngineCapacity\"]\n", "TRAIN_BASE = pd.read_csv(\"train/train.tsv\", sep ='\\t', names=NAMES)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "Y_TRAIN = np.array(TRAIN_BASE[\"Price\"])\n", "X_TRAIN = np.array(TRAIN_BASE[[\"Mileage\",\"Year\",\"EngineCapacity\"]])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "MODEL = LinearRegression().fit(X_TRAIN,Y_TRAIN)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## DEV-0" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "NAMES = [\"Mileage\",\"Year\",\"Brand\",\"EngineType\",\"EngineCapacity\"]\n", "FILE_BASE = pd.read_csv(\"dev-0/in.tsv\", sep ='\\t', names=NAMES)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "X_TEST = np.array(FILE_BASE[[\"Mileage\",\"Year\",\"EngineCapacity\"]])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "Y_TEST = MODEL.predict(X_TEST)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "VALUES = np.array2string(Y_TEST, precision=5, separator='\\n',suppress_small=True)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "VALUES = VALUES.split(\".\\n\")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "OUTFILE = open(\"dev-0/out.tsv\", \"w\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": false }, "outputs": [], "source": [ "for x in VALUES:\n", " RESULT = x.replace(\" \",\"\")\n", " RESULT = RESULT.replace(\"[\",\"\")\n", " RESULT = RESULT.replace(\"]\",\"\")\n", " OUTFILE.write(str(RESULT))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "OUTFILE.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## TEST A" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "NAMES = [\"Mileage\",\"Year\",\"Brand\",\"EngineType\",\"EngineCapacity\"]\n", "FILE_BASE = pd.read_csv(\"test-A/in.tsv\", sep ='\\t', names=NAMES)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "X_TEST = np.array(FILE_BASE[[\"Mileage\",\"Year\",\"EngineCapacity\"]])" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "Y_TEST = MODEL.predict(X_TEST)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "VALUES = np.array2string(Y_TEST, precision=5, separator='\\n',suppress_small=True)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "VALUES = VALUES.split(\".\\n\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "OUTFILE = open(\"test-A/out.tsv\", \"w\")" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "for x in VALUES:\n", " RESULT = x.replace(\" \",\"\")\n", " RESULT = RESULT.replace(\"[\",\"\")\n", " RESULT = RESULT.replace(\"]\",\"\")\n", " OUTFILE.write(str(RESULT) )" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "OUTFILE.close()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }