import numpy as np from sklearn import preprocessing from sklearn.pipeline import make_pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LinearRegression from sklearn import linear_model import pandas as pd train=pd.read_csv('train/train.tsv',sep='\t',names=['price','mileage','year','brand','engineType','engineCapacity']) df = pd.DataFrame(train,columns=['price','mileage','year','brand','engineType','engineCapacity']) Y=df[['price']] X=df[['year','mileage','engineCapacity']] reg = linear_model.LinearRegression() reg.fit(X, Y) inn=pd.read_csv('test-A/in.tsv',sep='\t',names=['mileage','year','brand','engineType','engineCapacity']) df = pd.DataFrame(inn,columns=['mileage','year','brand','engineType','engineCapacity']) r=df[['year','mileage','engineCapacity']] y_pred=reg.predict(r) y_pred=np.concatenate(y_pred) t=np.array2string(y_pred, precision=5, separator='\n',suppress_small=True) t=t.lstrip('[').rstrip(']') f = open("test-A/out.tsv", "a") f.write(t)