import pandas as pd import matplotlib.pyplot as plt # Read column names col_names = [] with open('names') as f: col_names = f.read().strip().split('\t') # Read data dev = pd.read_table('dev-0/in.tsv', error_bad_lines=False, header=None, names=col_names[1:]) test = pd.read_table('test-A/in.tsv', error_bad_lines=False, header=None, names=col_names[1:]) train = pd.read_table('train/train.tsv', error_bad_lines=False, header=None, names=col_names) test_expected = pd.read_table('dev-0/expected.tsv', error_bad_lines=False, header=None) # Create dummies for brand train = pd.get_dummies(train, columns=['engineType']) # Sprawdzanie ile jest odstających wartości dla price fig, ax = plt.subplots(1, 2) fig.set_figheight(15) fig.set_figwidth(20) ax[0].boxplot(train['price']) ax[0].set_title('price') ax[1].boxplot(train['mileage']) ax[1].set_title('mileage') plt.show() # Usunięcie odstających wartości priceMin = 0 for price in train['price']: if price < 1000: priceMin += 1 print("Price min cut: " + str(priceMin)) priceMax = 0 for price in train['price']: if price > 1000000: priceMin += 1 print("Price max cut: " + str(priceMax)) mileageMin = 0 for m in train['mileage']: if m < 100: mileageMin += 1 print("Mileage min cut: " + str(mileageMin)) train = train.loc[(train['price'] > 1000)] train = train.loc[(train['mileage'] > 100)] # Split train set to X and Y X = train.loc[:, train.columns != 'price'] Y = train['price'] # print(train) # print(col_names)