34 lines
1.1 KiB
Python
34 lines
1.1 KiB
Python
from sklearn.linear_model import LinearRegression
|
|
import pandas as pd
|
|
import numpy as np
|
|
|
|
|
|
def get_model():
|
|
df = pd.read_csv('./train/train.tsv', sep='\t',
|
|
names=["price", "mileage", "year", "brand", "engine_type", "engine_capacity"])
|
|
X = df.loc[:, df.columns != 'price']
|
|
y = df['price']
|
|
|
|
X = X.drop(["brand"], axis=1)
|
|
X = pd.get_dummies(X, columns= ["engine_type"], drop_first=True)
|
|
regr = LinearRegression()
|
|
return regr.fit(X, y)
|
|
|
|
|
|
def predict_and_write(path, model):
|
|
with open(f'{path}out.tsv', 'w') as out:
|
|
df_dev = pd.read_csv(f'{path}in.tsv', sep='\t',
|
|
names=["mileage", "year", "brand", "engine_type", "engine_capacity"])
|
|
df_dev = df_dev.drop(["brand"], axis=1)
|
|
df_dev = pd.get_dummies(df_dev, columns= ["engine_type"], drop_first=True)
|
|
predictions = model.predict(df_dev).astype(int)
|
|
for prediction in predictions:
|
|
out.write(f"{prediction}\n")
|
|
|
|
def main():
|
|
model = get_model()
|
|
predict_and_write('./dev-0/', model)
|
|
predict_and_write('./test-A/', model)
|
|
|
|
if __name__ == '__main__':
|
|
main() |