64 lines
2.4 KiB
Python
64 lines
2.4 KiB
Python
import copy
|
|
import sys
|
|
from sacrebleu.metrics import BLEU, CHRF, TER
|
|
import pandas as pd
|
|
|
|
|
|
# pip install sacrebleu pandas
|
|
# example usage one arg python 1.py model_cv_1_0_preds.csv
|
|
# example usage mulitple args python 1.py model_cv_1_0_preds.csv model_cv_1_1_preds.csv model_cv_1_2_preds.csv
|
|
|
|
PREDICTED_COLUMN_NAME = 'query_annot'
|
|
LABEL_COLUMN_NAME = 'target_annot'
|
|
PREDICTED_COLUMN_NAME = 'plm_names'
|
|
LABEL_COLUMN_NAME = 'targets'
|
|
COLUMN_SEPARATOR = ','
|
|
|
|
|
|
predicted_all_splits = list()
|
|
label_all_splits = list()
|
|
|
|
bleu = BLEU(effective_order=True)
|
|
chrf = CHRF()
|
|
def get_statistics(r):
|
|
metrics = dict()
|
|
r['score_bleu'] = r.apply(
|
|
lambda row: round(bleu.sentence_score(row[PREDICTED_COLUMN_NAME], [row[LABEL_COLUMN_NAME]]).score, 2), axis=1)
|
|
r['score_chrf'] = r.apply(
|
|
lambda row: round(chrf.sentence_score(row[PREDICTED_COLUMN_NAME], [row[LABEL_COLUMN_NAME]]).score, 2), axis=1)
|
|
r['score_exact_match'] = r.apply(lambda row: 1 if row[PREDICTED_COLUMN_NAME] == row[LABEL_COLUMN_NAME] else 0,
|
|
axis=1)
|
|
|
|
hyps = r[PREDICTED_COLUMN_NAME].tolist()
|
|
references = [r[LABEL_COLUMN_NAME].tolist(), ]
|
|
|
|
metrics['bleu'] = round(bleu.corpus_score(hyps, references).score, 2)
|
|
metrics['chrf'] = round(chrf.corpus_score(hyps, references).score, 2)
|
|
metrics['exact'] = round(float(100 * r['score_exact_match'].mean()), 2)
|
|
|
|
return r, metrics
|
|
|
|
|
|
for FILE_PATH in sys.argv[1:]:
|
|
r = pd.read_csv(FILE_PATH,sep = COLUMN_SEPARATOR)
|
|
|
|
print(FILE_PATH + ':')
|
|
report_with_metrics, metrics = get_statistics(r)
|
|
|
|
predicted_all_splits.extend(r[PREDICTED_COLUMN_NAME].to_list())
|
|
label_all_splits.extend(r[LABEL_COLUMN_NAME].to_list())
|
|
|
|
print(metrics)
|
|
|
|
report_with_metrics = report_with_metrics.sort_values(by='score_chrf', ascending=False)[
|
|
[LABEL_COLUMN_NAME, PREDICTED_COLUMN_NAME, 'score_bleu', 'score_chrf', 'score_exact_match']].drop_duplicates()
|
|
report_with_metrics.to_csv(FILE_PATH.replace('.', '_metrics.'), sep=COLUMN_SEPARATOR, index=False)
|
|
|
|
if len(sys.argv) > 2:
|
|
print('ALL SPLITS:')
|
|
label_all_splits = [label_all_splits, ]
|
|
metrics = dict()
|
|
metrics['bleu'] = round(bleu.corpus_score(predicted_all_splits, label_all_splits).score, 2)
|
|
metrics['chrf'] = round(chrf.corpus_score(predicted_all_splits, label_all_splits).score, 2)
|
|
metrics['exact'] = round(float(100 * r['score_exact_match'].mean()), 2)
|
|
print(metrics) |