challenging-america-word-ga.../roberta_large_finetune_existing/predict.py

63 lines
2.0 KiB
Python
Raw Permalink Normal View History

2021-07-10 09:05:38 +02:00
import torch
from fairseq.models.roberta import RobertaModel
from fairseq import hub_utils
from fairseq.models.roberta import RobertaModel, RobertaHubInterface
import os
from tqdm import tqdm
roberta = RobertaModel.from_pretrained('checkpoint_final')
roberta.eval()
roberta.cpu()
preds = roberta.fill_mask('I like <mask> and apples', topk=3)
#import pdb; pdb.set_trace()
# raise CUDA RuntimeError from which
# the process does not recover
BLACKLIST = ['aeeadb08042bbd49dcbefcefa1f13806',
'01ba303704bb62bcb59f8cb7cb5663d7',
'98bdfa711364f45f1bcffb1359793614',
'a9da7950abcbd531a5207c04c3bdc840',
'4cd7f730ee72451406afa89c5c6431d6',
]
def predict(f_in_path,f_out_path):
f_in = open(f_in_path,'r', newline='\n')
f_out = open(f_out_path,'w', newline='\n')
for line in tqdm(f_in,total = 88000):
id,_, before, after = line.split('\t')
before = before.replace('\\n', '\n')
after = after.replace('\\n', '\n')
before = ' '.join(before.split(' ')[-40:]) # tu można poprawić, żeby śmigał na tokenal spm a nie zakładał że jest jak ze spacjami
after = ' '.join(after.split(' ')[:40])
input = before + ' <mask> ' + after
try:
if id in BLACKLIST:
f_out.write(':1\n')
continue
preds = roberta.fill_mask(input, topk=10)
hyps = []
probs_sum = 0.0
for pred in preds:
if pred[2] == '<unk>':
continue
hyps.append(pred[2].rstrip().lstrip() + ':' + str(pred[1]))
probs_sum += pred[1]
hyps.append(':' + str(1 - probs_sum))
preds_line = ' '.join(hyps)
f_out.write(preds_line + '\n')
except RuntimeError:
import pdb ; pdb.set_trace()
print('RUNTIMEERROR')
f_out.write(':1\n')
f_out.close()
predict('../dev-0/in.tsv', '../dev-0/out.tsv')
predict('../test-A/in.tsv', '../test-A/out.tsv')