63 lines
2.0 KiB
Python
63 lines
2.0 KiB
Python
import torch
|
|
from fairseq.models.roberta import RobertaModel
|
|
from fairseq import hub_utils
|
|
from fairseq.models.roberta import RobertaModel, RobertaHubInterface
|
|
|
|
import os
|
|
from tqdm import tqdm
|
|
|
|
|
|
roberta = RobertaModel.from_pretrained('checkpoint_final')
|
|
|
|
roberta.eval()
|
|
roberta.cuda()
|
|
|
|
|
|
preds = roberta.fill_mask('I like <mask> and apples', topk=3)
|
|
#import pdb; pdb.set_trace()
|
|
|
|
# raise CUDA RuntimeError from which
|
|
# the process does not recover
|
|
BLACKLIST = ['aeeadb08042bbd49dcbefcefa1f13806',
|
|
'01ba303704bb62bcb59f8cb7cb5663d7',
|
|
'98bdfa711364f45f1bcffb1359793614',
|
|
'a9da7950abcbd531a5207c04c3bdc840',
|
|
'4cd7f730ee72451406afa89c5c6431d6',
|
|
]
|
|
|
|
def predict(f_in_path,f_out_path):
|
|
f_in = open(f_in_path,'r', newline='\n')
|
|
f_out = open(f_out_path,'w', newline='\n')
|
|
|
|
for line in tqdm(f_in,total = 88000):
|
|
id,_, before, after = line.split('\t')
|
|
before = before.replace('\\n', '\n')
|
|
after = after.replace('\\n', '\n')
|
|
before = ' '.join(before.split(' ')[-40:]) # tu można poprawić, żeby śmigał na tokenal spm a nie zakładał że jest jak ze spacjami
|
|
after = ' '.join(after.split(' ')[:40])
|
|
input = before + ' <mask> ' + after
|
|
try:
|
|
if id in BLACKLIST:
|
|
f_out.write(':1\n')
|
|
continue
|
|
preds = roberta.fill_mask(input, topk=10)
|
|
hyps = []
|
|
probs_sum = 0.0
|
|
for pred in preds:
|
|
if pred[2] == '<unk>':
|
|
continue
|
|
hyps.append(pred[2].rstrip().lstrip() + ':' + str(pred[1]))
|
|
probs_sum += pred[1]
|
|
hyps.append(':' + str(1 - probs_sum))
|
|
preds_line = ' '.join(hyps)
|
|
f_out.write(preds_line + '\n')
|
|
except RuntimeError:
|
|
import pdb ; pdb.set_trace()
|
|
print('RUNTIMEERROR')
|
|
f_out.write(':1\n')
|
|
|
|
f_out.close()
|
|
|
|
predict('../dev-0/in.tsv', '../dev-0/out.tsv')
|
|
predict('../test-A/in.tsv', '../test-A/out.tsv')
|