roberta batched training and prediction

This commit is contained in:
kubapok 2021-07-06 09:35:57 +02:00
parent 85cee1421c
commit 46e06b748e
2 changed files with 71 additions and 290 deletions

View File

@ -1,196 +0,0 @@
import os
import torch
import random
import copy
from fairseq.models.roberta import RobertaModel, RobertaHubInterface
from fairseq import hub_utils
from fairseq.data.data_utils import collate_tokens
from tqdm import tqdm
import numpy as np
from sklearn.preprocessing import MinMaxScaler
EVAL_OFTEN = True
EVAL_EVERY = 10000
roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
roberta.cuda()
device='cuda'
train_in = [l.rstrip('\n') for l in open('../train/in.tsv',newline='\n').readlines()] # shuffled
dev_in = [l.rstrip('\n') for l in open('../dev-0/in.tsv',newline='\n').readlines()] # shuffled
train_year = [float(l.rstrip('\n')) for l in open('../train/expected.tsv',newline='\n').readlines()]
dev_year = [float(l.rstrip('\n')) for l in open('../dev-0/expected.tsv',newline='\n').readlines()]
dev_in_not_shuffled = copy.deepcopy(dev_in) # not shuffled
test_in = [l.rstrip('\n') for l in open('../test-A/in.tsv',newline='\n').readlines()] # not shuffled
c = list(zip(train_in,train_year))
random.shuffle(c)
train_in, train_year = zip(*c)
c = list(zip(dev_in,dev_year))
random.shuffle(c)
dev_in, dev_year = zip(*c)
scaler = MinMaxScaler()
train_year_scaled = scaler.fit_transform(np.array(train_year).reshape(-1,1))
dev_year_scaled = scaler.transform(np.array(dev_year).reshape(-1,1))
class RegressorHead(torch.nn.Module):
def __init__(self):
super(RegressorHead, self).__init__()
self.linear1 = torch.nn.Linear(768,300)
self.linear2 = torch.nn.Linear(300,1)
self.linearxxx = torch.nn.Linear(768,1)
self.dropout1 = torch.nn.Dropout(0.0)
self.dropout2 = torch.nn.Dropout(0.0)
self.m = torch.nn.LeakyReLU(0.1)
def forward(self,x):
#x = self.dropout1(x)
#x = self.linear1(x)
#x = self.dropout2(x)
x = self.linearxxx(x)
x = self.m(x)
x = -self.m(-x +1 ) +1
return x
regressor_head = RegressorHead().to(device)
optimizer = torch.optim.Adam(list(roberta.parameters()) + list(regressor_head.parameters()), lr = 1e-6)
criterion = torch.nn.MSELoss(reduction='sum').to(device)
BATCH_SIZE = 1
def get_train_batch(dataset_in,dataset_y):
for i in tqdm(range(0,len(dataset_in), BATCH_SIZE)):
batch_of_text = dataset_in[i:i+BATCH_SIZE]
#batch = collate_tokens([roberta.encode(p)[:512] for p in batch_of_text], pad_idx=1)
batch = roberta.encode(batch_of_text[0])
output= None
for j in range(0,1,512): # only first 512 tokens instead of all
if output is None:
output = roberta.extract_features(batch[j:j+512])
else:
output_new = roberta.extract_features(batch[j:j+512])
output = torch.cat((output, output_new),1)
features = torch.mean(output,1)
years = torch.FloatTensor(dataset_y[i:i+BATCH_SIZE]).to(device).squeeze()
yield features, years
def eval():
criterion_eval = torch.nn.MSELoss(reduction='sum')
roberta.eval()
regressor_head.eval()
loss = 0.0
loss_clipped = 0.0
loss_scaled = 0.0
for batch, year in tqdm(get_train_batch(dev_in,dev_year_scaled)):
x = regressor_head(batch.to(device)).squeeze()
x_clipped = torch.clamp(x,0.0,1.0)
original_x = torch.FloatTensor(scaler.inverse_transform(x.detach().cpu().numpy().reshape(1,-1)))
original_x_clipped = torch.FloatTensor(scaler.inverse_transform(x_clipped.detach().cpu().numpy().reshape(1,-1)))
original_year = torch.FloatTensor(scaler.inverse_transform(year.detach().cpu().numpy().reshape(1,-1)))
loss_scaled += criterion_eval(x, year).item()
loss += criterion_eval(original_x, original_year).item()
loss_clipped += criterion_eval(original_x_clipped, original_year).item()
print(' full valid loss scaled: ' + str(np.sqrt(loss_scaled/len(dev_year))))
print(' full valid loss: ' + str(np.sqrt(loss/len(dev_year))))
print(' full valid loss clipped: ' + str(np.sqrt(loss_clipped/len(dev_year))))
def eval_short():
criterion_eval = torch.nn.MSELoss(reduction='sum')
roberta.eval()
regressor_head.eval()
loss = 0.0
loss_clipped = 0.0
loss_scaled = 0.0
for batch, year in tqdm(get_train_batch(dev_in[:1000],dev_year_scaled[:1000])):
x = regressor_head(batch.to(device)).squeeze()
x_clipped = torch.clamp(x,0.0,1.0)
original_x = torch.FloatTensor(scaler.inverse_transform(x.detach().cpu().numpy().reshape(1,-1)))
original_x_clipped = torch.FloatTensor(scaler.inverse_transform(x_clipped.detach().cpu().numpy().reshape(1,-1)))
original_year = torch.FloatTensor(scaler.inverse_transform(year.detach().cpu().numpy().reshape(1,-1)))
loss_scaled += criterion_eval(x, year).item()
loss += criterion_eval(original_x, original_year).item()
loss_clipped += criterion_eval(original_x_clipped, original_year).item()
print('valid loss scaled: ' + str(np.sqrt(loss_scaled/1000)))
print('valid loss: ' + str(np.sqrt(loss/1000)))
print('valid loss clipped: ' + str(np.sqrt(loss_clipped/len(dev_year))))
def train_one_epoch():
roberta.train()
regressor_head.train()
loss_value=0.0
iteration = 0
for batch, year in get_train_batch(train_in,train_year_scaled):
iteration +=1
roberta.zero_grad()
regressor_head.zero_grad()
#import pdb; pdb.set_trace()
x = regressor_head(batch.to(device)).squeeze()
loss = criterion(x, year)
loss_value += loss.item()
loss.backward()
optimizer.step()
roberta.zero_grad()
regressor_head.zero_grad()
if EVAL_OFTEN and (iteration > 1) and (iteration % EVAL_EVERY == 1):
print('train loss: ' + str(np.sqrt(loss_value / EVAL_EVERY)))
eval_short()
roberta.train()
regressor_head.train()
loss_value = 0.0
#print('train loss: ' + str(loss_value/len(train_year)))
def predict_dev():
roberta.eval()
regressor_head.eval()
f_out = open('../dev-0/out.tsv','w')
for batch, year in tqdm(get_train_batch(dev_in_not_shuffled,dev_year_scaled)):
#batch_first = roberta.extract_features(batch)[:,0].to(device)
x = regressor_head(batch).squeeze()
x_clipped = torch.clamp(x,0.0,1.0)
original_x_clipped = scaler.inverse_transform(x_clipped.detach().cpu().numpy().reshape(1,-1))
for y in original_x_clipped[0]:
f_out.write(str(y) + '\n')
f_out.close()
def predict_test():
roberta.eval()
regressor_head.eval()
f_out = open('../test-A/out.tsv','w')
for batch, year in tqdm(get_train_batch(test_in,dev_year_scaled)):
#batch_first = roberta.extract_features(batch)[:,0].to(device)
x = regressor_head(batch).squeeze()
x_clipped = torch.clamp(x,0.0,1.0)
original_x_clipped = scaler.inverse_transform(x_clipped.detach().cpu().numpy().reshape(1,-1))
for y in original_x_clipped[0]:
f_out.write(str(y) + '\n')
f_out.close()
roberta.load_state_dict(torch.load('checkpoints/roberta_to_regressor3.pt'))
regressor_head.load_state_dict(torch.load('checkpoints/regressor_head3.pt'))
predict_dev()
predict_test()

View File

@ -11,15 +11,18 @@ from sklearn.preprocessing import MinMaxScaler
EVAL_OFTEN = True EVAL_OFTEN = True
EVAL_EVERY = 10000 EVAL_EVERY = 50
BATCH_SIZE = 3
model_type = 'base' # base or large
roberta = torch.hub.load('pytorch/fairseq', 'roberta.base')
roberta = torch.hub.load('pytorch/fairseq', f'roberta.{model_type}')
roberta.cuda() roberta.cuda()
device='cuda' device='cuda'
# LOAD DATA
train_in = [l.rstrip('\n') for l in open('../train/in.tsv',newline='\n').readlines()] # shuffled train_in = [l.rstrip('\n') for l in open('../train/in.tsv',newline='\n').readlines()] # shuffled
dev_in = [l.rstrip('\n') for l in open('../dev-0/in.tsv',newline='\n').readlines()] # shuffled dev_in = [l.rstrip('\n') for l in open('../dev-0/in.tsv',newline='\n').readlines()] # shuffled
@ -29,6 +32,7 @@ dev_year = [float(l.rstrip('\n')) for l in open('../dev-0/expected.tsv',newline=
dev_in_not_shuffled = copy.deepcopy(dev_in) # not shuffled dev_in_not_shuffled = copy.deepcopy(dev_in) # not shuffled
test_in = [l.rstrip('\n') for l in open('../test-A/in.tsv',newline='\n').readlines()] # not shuffled test_in = [l.rstrip('\n') for l in open('../test-A/in.tsv',newline='\n').readlines()] # not shuffled
# SHUFFLE DATA
c = list(zip(train_in,train_year)) c = list(zip(train_in,train_year))
random.shuffle(c) random.shuffle(c)
train_in, train_year = zip(*c) train_in, train_year = zip(*c)
@ -36,8 +40,8 @@ c = list(zip(dev_in,dev_year))
random.shuffle(c) random.shuffle(c)
dev_in, dev_year = zip(*c) dev_in, dev_year = zip(*c)
# SCALE DATA
scaler = MinMaxScaler() scaler = MinMaxScaler()
train_year_scaled = scaler.fit_transform(np.array(train_year).reshape(-1,1)) train_year_scaled = scaler.fit_transform(np.array(train_year).reshape(-1,1))
dev_year_scaled = scaler.transform(np.array(dev_year).reshape(-1,1)) dev_year_scaled = scaler.transform(np.array(dev_year).reshape(-1,1))
@ -45,56 +49,46 @@ dev_year_scaled = scaler.transform(np.array(dev_year).reshape(-1,1))
class RegressorHead(torch.nn.Module): class RegressorHead(torch.nn.Module):
def __init__(self): def __init__(self):
super(RegressorHead, self).__init__() super(RegressorHead, self).__init__()
self.linear1 = torch.nn.Linear(768,300) in_dim = 768 if model_type == 'base' else 1024
self.linear2 = torch.nn.Linear(300,1) self.linear = torch.nn.Linear(in_dim, 1)
self.linearxxx = torch.nn.Linear(768,1)
self.dropout1 = torch.nn.Dropout(0.0)
self.dropout2 = torch.nn.Dropout(0.0)
self.m = torch.nn.LeakyReLU(0.1) self.m = torch.nn.LeakyReLU(0.1)
def forward(self,x): def forward(self, x):
#x = self.dropout1(x) x = self.linear(x)
#x = self.linear1(x)
#x = self.dropout2(x)
x = self.linearxxx(x)
x = self.m(x) x = self.m(x)
x = -self.m(-x +1 ) +1 x = - self.m(-x + 1 ) +1
return x return x
regressor_head = RegressorHead().to(device) def get_features_and_year(dataset_in,dataset_y):
optimizer = torch.optim.Adam(list(roberta.parameters()) + list(regressor_head.parameters()), lr=1e-6)
criterion = torch.nn.MSELoss(reduction='sum').to(device)
BATCH_SIZE = 1
def get_train_batch(dataset_in,dataset_y):
for i in tqdm(range(0,len(dataset_in), BATCH_SIZE)): for i in tqdm(range(0,len(dataset_in), BATCH_SIZE)):
batch_of_text = dataset_in[i:i+BATCH_SIZE] batch_of_text = dataset_in[i:i+BATCH_SIZE]
#batch = collate_tokens([roberta.encode(p)[:512] for p in batch_of_text], pad_idx=1) batch = collate_tokens([roberta.encode(p)[:512] for p in batch_of_text], pad_idx=1)
batch = roberta.encode(batch_of_text[0]) features = roberta.extract_features(batch).mean(1)
output= None years = torch.FloatTensor(dataset_y[i:i+BATCH_SIZE]).to(device)
for j in range(0,1,512): # only first 512 tokens instead of all
if output is None:
output = roberta.extract_features(batch[j:j+512])
else:
output_new = roberta.extract_features(batch[j:j+512])
output = torch.cat((output, output_new),1)
features = torch.mean(output,1)
years = torch.FloatTensor(dataset_y[i:i+BATCH_SIZE]).to(device).squeeze()
yield features, years yield features, years
def eval_dev(short=False):
def eval():
criterion_eval = torch.nn.MSELoss(reduction='sum') criterion_eval = torch.nn.MSELoss(reduction='sum')
roberta.eval() roberta.eval()
regressor_head.eval() regressor_head.eval()
loss = 0.0 loss = 0.0
loss_clipped = 0.0 loss_clipped = 0.0
loss_scaled = 0.0 loss_scaled = 0.0
for batch, year in tqdm(get_train_batch(dev_in,dev_year_scaled)):
x = regressor_head(batch.to(device)).squeeze() if short:
dataset_in = dev_in[:1000]
dataset_years = dev_year_scaled[:1000]
else:
dataset_in = dev_in
dataset_years = dev_year_scaled
predictions_sum = 0
for batch, year in tqdm(get_features_and_year(dataset_in, dataset_years)):
predictions_sum += year.shape[0]
x = regressor_head(batch.to(device))
x_clipped = torch.clamp(x,0.0,1.0) x_clipped = torch.clamp(x,0.0,1.0)
original_x = torch.FloatTensor(scaler.inverse_transform(x.detach().cpu().numpy().reshape(1,-1))) original_x = torch.FloatTensor(scaler.inverse_transform(x.detach().cpu().numpy().reshape(1,-1)))
@ -104,32 +98,11 @@ def eval():
loss_scaled += criterion_eval(x, year).item() loss_scaled += criterion_eval(x, year).item()
loss += criterion_eval(original_x, original_year).item() loss += criterion_eval(original_x, original_year).item()
loss_clipped += criterion_eval(original_x_clipped, original_year).item() loss_clipped += criterion_eval(original_x_clipped, original_year).item()
print(' full valid loss scaled: ' + str(np.sqrt(loss_scaled/len(dev_year))))
print(' full valid loss: ' + str(np.sqrt(loss/len(dev_year))))
print(' full valid loss clipped: ' + str(np.sqrt(loss_clipped/len(dev_year))))
def eval_short(): print('valid loss scaled: ' + str(np.sqrt(loss_scaled/predictions_sum)))
criterion_eval = torch.nn.MSELoss(reduction='sum') print('valid loss: ' + str(np.sqrt(loss/predictions_sum)))
roberta.eval() print('valid loss clipped: ' + str(np.sqrt(loss_clipped/predictions_sum)))
regressor_head.eval()
loss = 0.0
loss_clipped = 0.0
loss_scaled = 0.0
for batch, year in tqdm(get_train_batch(dev_in[:1000],dev_year_scaled[:1000])):
x = regressor_head(batch.to(device)).squeeze()
x_clipped = torch.clamp(x,0.0,1.0)
original_x = torch.FloatTensor(scaler.inverse_transform(x.detach().cpu().numpy().reshape(1,-1)))
original_x_clipped = torch.FloatTensor(scaler.inverse_transform(x_clipped.detach().cpu().numpy().reshape(1,-1)))
original_year = torch.FloatTensor(scaler.inverse_transform(year.detach().cpu().numpy().reshape(1,-1)))
loss_scaled += criterion_eval(x, year).item()
loss += criterion_eval(original_x, original_year).item()
loss_clipped += criterion_eval(original_x_clipped, original_year).item()
print('valid loss scaled: ' + str(np.sqrt(loss_scaled/1000)))
print('valid loss: ' + str(np.sqrt(loss/1000)))
print('valid loss clipped: ' + str(np.sqrt(loss_clipped/len(dev_year))))
def train_one_epoch(): def train_one_epoch():
@ -137,15 +110,14 @@ def train_one_epoch():
regressor_head.train() regressor_head.train()
loss_value=0.0 loss_value=0.0
iteration = 0 iteration = 0
for batch, year in get_train_batch(train_in,train_year_scaled): for batch, year in get_features_and_year(train_in,train_year_scaled):
iteration +=1 iteration +=1
roberta.zero_grad() roberta.zero_grad()
regressor_head.zero_grad() regressor_head.zero_grad()
#import pdb; pdb.set_trace()
x = regressor_head(batch.to(device)).squeeze() predictions = regressor_head(batch.to(device))
loss = criterion(x, year) loss = criterion(predictions, year)
loss_value += loss.item() loss_value += loss.item()
loss.backward() loss.backward()
optimizer.step() optimizer.step()
@ -155,48 +127,53 @@ def train_one_epoch():
if EVAL_OFTEN and (iteration > 1) and (iteration % EVAL_EVERY == 1): if EVAL_OFTEN and (iteration > 1) and (iteration % EVAL_EVERY == 1):
print('train loss: ' + str(np.sqrt(loss_value / EVAL_EVERY))) print('train loss: ' + str(np.sqrt(loss_value / (EVAL_EVERY*BATCH_SIZE))))
eval_short() eval_dev(True)
roberta.train() roberta.train()
regressor_head.train() regressor_head.train()
loss_value = 0.0 loss_value = 0.0
#print('train loss: ' + str(loss_value/len(train_year)))
def predict_dev(): def predict(dataset='dev'):
if dataset=='dev':
f_out_path = '../dev-0/out.tsv'
dataset_in_not_shuffled = dev_in_not_shuffled
elif dataset=='test':
f_out_path = '../test-A/out.tsv'
dataset_in_not_shuffled = test_in
roberta.eval() roberta.eval()
regressor_head.eval() regressor_head.eval()
f_out = open('../dev-0/out.tsv','w') f_out = open(f_out_path,'w')
for batch, year in tqdm(get_train_batch(dev_in_not_shuffled,dev_year_scaled)): for batch, year in tqdm(get_features_and_year(dataset_in_not_shuffled, dev_year_scaled)):
#batch_first = roberta.extract_features(batch)[:,0].to(device) x = regressor_head(batch)
x = regressor_head(batch).squeeze()
x_clipped = torch.clamp(x,0.0,1.0) x_clipped = torch.clamp(x,0.0,1.0)
original_x_clipped = scaler.inverse_transform(x_clipped.detach().cpu().numpy().reshape(1,-1)) original_x_clipped = scaler.inverse_transform(x_clipped.detach().cpu().numpy().reshape(1,-1))
for y in original_x_clipped[0]: for y in original_x_clipped[0]:
f_out.write(str(y) + '\n') f_out.write(str(y) + '\n')
f_out.close() f_out.close()
def predict_test():
roberta.eval() regressor_head = RegressorHead().to(device)
regressor_head.eval()
f_out = open('../test-A/out.tsv','w') optimizer = torch.optim.Adam(list(roberta.parameters()) + list(regressor_head.parameters()), lr=1e-6)
for batch, year in tqdm(get_train_batch(test_in,dev_year_scaled)): criterion = torch.nn.MSELoss(reduction='sum').to(device)
#batch_first = roberta.extract_features(batch)[:,0].to(device)
x = regressor_head(batch).squeeze()
x_clipped = torch.clamp(x,0.0,1.0)
original_x_clipped = scaler.inverse_transform(x_clipped.detach().cpu().numpy().reshape(1,-1))
for y in original_x_clipped[0]:
f_out.write(str(y) + '\n')
f_out.close()
for i in range(100): for i in range(100):
print('epoch ' + str(i)) print('epoch ' + str(i))
train_one_epoch() train_one_epoch()
eval()
predict_dev() print(f'epoch {i} done, EVALUATION ON FULL DEV:')
predict_test() eval_dev()
print('evaluation done')
predict('dev')
predict('test')
torch.save(roberta.state_dict(),'checkpoints/roberta_to_regressor' + str(i) + '.pt') torch.save(roberta.state_dict(),'checkpoints/roberta_to_regressor' + str(i) + '.pt')
torch.save(regressor_head.state_dict(),'checkpoints/regressor_head' + str(i) + '.pt') torch.save(regressor_head.state_dict(),'checkpoints/regressor_head' + str(i) + '.pt')
predict_dev()
predict_test()
roberta.load_state_dict(torch.load('checkpoints/roberta_to_regressor1.pt'))
regressor_head.load_state_dict(torch.load('checkpoints/regressor_head1.pt'))
predict('dev')
predict('test')