import pickle from datasets import load_dataset from transformers import AutoTokenizer from tqdm import tqdm from sklearn.preprocessing import MinMaxScaler import numpy as np dataset = load_dataset('csv', sep='\t', data_files={'train': ['./train_huggingface_format.csv'], 'test': ['./dev-0_huggingface_format.csv']}) test_dataset_A = load_dataset('csv', sep='\t', data_files='test-A_huggingface_format.csv') tokenizer = AutoTokenizer.from_pretrained('roberta-base') def tokenize_function(examples): t = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512) return t test_tokenized_datasets_A = test_dataset_A.map(tokenize_function, batched=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) #train_dataset = tokenized_datasets["train"].shuffle(seed=42) eval_dataset_full = tokenized_datasets["test"] #eval_dataset_small = tokenized_datasets["test"].select(range(2000)) #test_dataset_A = test_tokenized_datasets_A["train"] # # #scalers = dict() #scalers['year'] = MinMaxScaler().fit(np.array(train_dataset['year']).reshape(-1,1)) # #def add_scaled(example): # for factor in ('year',): # example[factor + '_scaled'] = scalers[factor].transform(np.array(example[factor]).reshape(-1,1)).reshape(1,-1)[0].item() # return example # #train_dataset = train_dataset.map(add_scaled) #eval_dataset_full = eval_dataset_full.map(add_scaled) #eval_dataset_small = eval_dataset_small.map(add_scaled) ##test_dataset_A = test_dataset_A.map(add_scaled) # # #with open('train_dataset.pickle','wb') as f_p: # pickle.dump(train_dataset, f_p) # #with open('eval_dataset_small.pickle','wb') as f_p: # pickle.dump(eval_dataset_small, f_p) # #with open('eval_dataset_full.pickle','wb') as f_p: # pickle.dump(eval_dataset_full, f_p) # #with open('test_dataset_A.pickle','wb') as f_p: # pickle.dump(test_dataset_A, f_p) # #with open('scalers.pickle','wb') as f_p: # pickle.dump(scalers, f_p)