54 lines
1.6 KiB
Python
54 lines
1.6 KiB
Python
import pickle
|
|
import torch
|
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
from torch.utils.data import DataLoader
|
|
from tqdm.auto import tqdm
|
|
|
|
#with open('train_dataset.pickle','rb') as f_p:
|
|
# train_dataset = pickle.load(f_p)
|
|
#
|
|
#with open('eval_dataset_small.pickle','rb') as f_p:
|
|
# eval_dataset_small = pickle.load(f_p)
|
|
#
|
|
#with open('eval_dataset_full.pickle','rb') as f_p:
|
|
# eval_dataset_full = pickle.load(f_p)
|
|
#
|
|
#with open('test_dataset_A.pickle','rb') as f_p:
|
|
# test_dataset_A = pickle.load(f_p)
|
|
|
|
with open('dev-0_huggingface_format.csv','r') as f_p:
|
|
eval_dataset_full = f_p.readlines()
|
|
|
|
with open('test-A_huggingface_format.csv','r') as f_p:
|
|
test_dataset = f_p.readlines()
|
|
|
|
device = 'cuda'
|
|
model = AutoModelForSequenceClassification.from_pretrained('./roberta_year_prediction')
|
|
tokenizer = AutoTokenizer.from_pretrained('roberta-base')
|
|
model.eval()
|
|
model.to(device)
|
|
|
|
with open('scalers.pickle', 'rb') as f_scaler:
|
|
scalers = pickle.load(f_scaler)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('roberta-base')
|
|
def predict(dataset, out_f):
|
|
outputs = []
|
|
|
|
for sample in tqdm(dataset[1:]):
|
|
y, t = sample.split('\t')
|
|
t = t.rstrip()
|
|
|
|
t = tokenizer(t, padding="max_length", truncation=True, max_length=512, return_tensors='pt').to('cuda')
|
|
|
|
outputs.extend(model(**t).logits.tolist())
|
|
outputs_transformed = scalers['year'].inverse_transform(outputs)
|
|
|
|
with open(out_f,'w') as f_out:
|
|
|
|
for o in outputs_transformed:
|
|
f_out.write(str(o[0]) + '\n')
|
|
|
|
predict(eval_dataset_full, '../dev-0/out.tsv')
|
|
predict(test_dataset, '../test-A/out.tsv')
|