criminal-classification-cha.../herbert/03_train.py
2021-07-11 22:37:19 +02:00

74 lines
1.9 KiB
Python

import pickle
from config import MODEL
from scipy.special import softmax
with open('train_dataset.pickle','rb') as f_p:
train_dataset = pickle.load(f_p)
with open('eval_dataset.pickle','rb') as f_p:
eval_dataset = pickle.load(f_p)
with open('test_dataset.pickle','rb') as f_p:
test_dataset = pickle.load(f_p)
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained(MODEL, num_labels=2)
from transformers import TrainingArguments
training_args = TrainingArguments("test_trainer",
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
evaluation_strategy='steps',
eval_steps=2_000,
gradient_accumulation_steps=10,
learning_rate=2e-6,
warmup_steps=4_000,
num_train_epochs=10,
load_best_model_at_end=True)
import numpy as np
from datasets import load_metric
metric = load_metric("f1")
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
from transformers import Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.save_model('./roberta_retrained')
trainer.evaluate()
eval_predictions = trainer.predict(eval_dataset).predictions
with open('../dev-0/out.tsv', 'w') as f_out:
for pred in eval_predictions:
pred = softmax(pred)[1]
f_out.write(str(pred) + '\n')
test_predictions = trainer.predict(test_dataset).predictions
with open('../test-A/out.tsv', 'w') as f_out:
for pred in test_predictions:
pred = softmax(pred)[1]
f_out.write(str(pred) + '\n')