en-ner-conll-2003/gru.ipynb

308 lines
14 KiB
Plaintext
Raw Normal View History

2021-06-22 19:27:08 +02:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "bce0cfa7",
"metadata": {},
2021-06-24 19:07:58 +02:00
"outputs": [],
2021-06-22 19:27:08 +02:00
"source": [
"from os import sep\n",
"from nltk import word_tokenize\n",
"import pandas as pd\n",
"import torch\n",
2021-06-24 19:07:58 +02:00
"from torchcrf import CRF\n",
2021-06-22 19:27:08 +02:00
"import gensim\n",
"from torch._C import device\n",
"from tqdm import tqdm\n",
"from torchtext.vocab import Vocab\n",
"from collections import Counter, OrderedDict\n",
"\n",
"\n",
"from torch.utils.data import DataLoader\n",
"import numpy as np\n",
"from sklearn.metrics import accuracy_score, f1_score, classification_report\n",
"import csv\n",
"import pickle\n",
"\n",
"import lzma\n",
"import re\n",
"import itertools"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "6695751c",
"metadata": {},
"outputs": [],
"source": [
"def build_vocab(dataset):\n",
" counter = Counter()\n",
" for document in dataset:\n",
" counter.update(document)\n",
" return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])"
]
},
{
"cell_type": "code",
2021-06-24 19:07:58 +02:00
"execution_count": 3,
2021-06-22 19:27:08 +02:00
"id": "d247e4fe",
"metadata": {},
"outputs": [],
"source": [
"def data_process(dt, vocab):\n",
" return [torch.tensor([vocab[token] for token in document], dtype=torch.long) for document in dt]\n",
"\n",
"\n",
"def get_scores(y_true, y_pred):\n",
" acc_score = 0\n",
" tp = 0\n",
" fp = 0\n",
" selected_items = 0\n",
" relevant_items = 0\n",
" for p, t in zip(y_pred, y_true):\n",
" if p == t:\n",
" acc_score += 1\n",
" if p > 0 and p == t:\n",
" tp += 1\n",
" if p > 0:\n",
" selected_items += 1\n",
" if t > 0:\n",
" relevant_items += 1\n",
"\n",
" if selected_items == 0:\n",
" precision = 1.0\n",
" else:\n",
" precision = tp / selected_items\n",
"\n",
" if relevant_items == 0:\n",
" recall = 1.0\n",
" else:\n",
" recall = tp / relevant_items\n",
"\n",
" if precision + recall == 0.0:\n",
" f1 = 0.0\n",
" else:\n",
" f1 = 2 * precision * recall / (precision + recall)\n",
"\n",
" return precision, recall, f1"
]
},
{
"cell_type": "code",
2021-06-24 19:07:58 +02:00
"execution_count": 4,
2021-06-22 19:27:08 +02:00
"id": "b6061642",
"metadata": {},
"outputs": [],
"source": [
"def process_output(lines):\n",
" result = []\n",
" for line in lines:\n",
" last_label = None\n",
" new_line = []\n",
" for label in line:\n",
" if(label != \"O\" and label[0:2] == \"I-\"):\n",
" if last_label == None or last_label == \"O\":\n",
" label = label.replace('I-', 'B-')\n",
" else:\n",
" label = \"I-\" + last_label[2:]\n",
" last_label = label\n",
" new_line.append(label)\n",
" x = (\" \".join(new_line))\n",
" result.append(\" \".join(new_line))\n",
" return result"
]
},
{
"cell_type": "code",
2021-06-24 19:07:58 +02:00
"execution_count": 5,
2021-06-22 19:27:08 +02:00
"id": "3d7c4dd3",
"metadata": {},
"outputs": [],
"source": [
"class GRU(torch.nn.Module):\n",
" def __init__(self):\n",
" super(GRU, self).__init__()\n",
" self.emb = torch.nn.Embedding(len(vocab_x.itos),100)\n",
" self.dropout = torch.nn.Dropout(0.2)\n",
" self.rec = torch.nn.GRU(100, 256, 2, batch_first = True, bidirectional = True)\n",
" self.fc1 = torch.nn.Linear(2* 256 , 9)\n",
" \n",
" def forward(self, x):\n",
" emb = torch.relu(self.emb(x))\n",
" emb = self.dropout(emb) \n",
" gru_output, h_n = self.rec(emb) \n",
" out_weights = self.fc1(gru_output)\n",
" return out_weights"
]
},
{
"cell_type": "code",
2021-06-24 19:07:58 +02:00
"execution_count": 6,
2021-06-22 19:27:08 +02:00
"id": "cd5e419d",
"metadata": {},
"outputs": [],
"source": [
"def dev_eval(model, crf, dev_tokens, dev_labels_tokens, vocab):\n",
" Y_true = []\n",
" Y_pred = []\n",
" model.eval()\n",
" crf.eval()\n",
" for i in tqdm(range(len(dev_labels_tokens))):\n",
" batch_tokens = dev_tokens[i].unsqueeze(0)\n",
" tags = list(dev_labels_tokens[i].numpy())\n",
" Y_true += tags\n",
"\n",
" Y_batch_pred_weights = model(batch_tokens).squeeze(0)\n",
" Y_batch_pred = torch.argmax(Y_batch_pred_weights, 1)\n",
" Y_pred += [crf.decode(Y_batch_pred)[0]]"
]
},
{
"cell_type": "code",
2021-06-24 19:07:58 +02:00
"execution_count": 7,
2021-06-22 19:27:08 +02:00
"id": "c808bbd5",
"metadata": {},
"outputs": [],
"source": [
"train = pd.read_csv('train/train.tsv', sep='\\t',\n",
" names=['labels', 'document'])\n",
"\n",
"Y_train = [y.split(sep=\" \") for y in train['labels'].values]\n",
"X_train = [x.split(sep=\" \") for x in train['document'].values]\n",
"\n",
"dev = pd.read_csv('dev-0/in.tsv', sep='\\t', names=['document'])\n",
"exp = pd.read_csv('dev-0/expected.tsv', sep='\\t', names=['labels'])\n",
"X_dev = [x.split(sep=\" \") for x in dev['document'].values]\n",
"Y_dev = [y.split(sep=\" \") for y in exp['labels'].values]\n",
"\n",
"test = pd.read_csv('test-A/in.tsv', sep='\\t', names=['document'])\n",
"X_test = test['document'].values"
]
},
{
"cell_type": "code",
2021-06-24 19:07:58 +02:00
"execution_count": 8,
2021-06-22 19:27:08 +02:00
"id": "79485c9a",
"metadata": {},
"outputs": [],
"source": [
"vocab_x = build_vocab(X_train)\n",
"vocab_y = build_vocab(Y_train)\n",
"train_tokens = data_process(X_train, vocab_x)\n",
"labels_tokens = data_process(Y_train, vocab_y)"
]
},
{
"cell_type": "code",
2021-06-24 19:07:58 +02:00
"execution_count": 12,
2021-06-22 19:27:08 +02:00
"id": "f29e3b63",
"metadata": {},
"outputs": [],
"source": [
"model = GRU()\n",
"crf = CRF(9)\n"
]
},
{
"cell_type": "code",
2021-06-24 19:07:58 +02:00
"execution_count": 13,
2021-06-22 19:27:08 +02:00
"id": "05482a7c",
"metadata": {},
"outputs": [],
"source": [
"criterion = torch.nn.CrossEntropyLoss()\n",
"params = list(model.parameters()) + list(crf.parameters())\n",
"optimizer = torch.optim.Adam(params)"
]
},
{
"cell_type": "code",
2021-06-24 19:07:58 +02:00
"execution_count": 14,
2021-06-22 19:27:08 +02:00
"id": "21a5282e",
"metadata": {},
2021-06-24 19:07:58 +02:00
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 0%| | 0/945 [00:00<?, ?it/s]\n"
]
},
{
"ename": "ValueError",
"evalue": "expected last dimension of emissions is 10, got 9",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-14-6dc1a1c63d46>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzero_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0mcrf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpredicted_tags\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtags\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_slow_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 889\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 890\u001b[0m for hook in itertools.chain(\n\u001b[1;32m 891\u001b[0m \u001b[0m_global_forward_hooks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/torchcrf/__init__.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, emissions, tags, mask, reduction)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0mreduction\u001b[0m \u001b[0;32mis\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0mnone\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0motherwise\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \"\"\"\n\u001b[0;32m---> 90\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0memissions\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtags\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtags\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmask\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 91\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mreduction\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m'none'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sum'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'mean'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'token_mean'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'invalid reduction: {reduction}'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/torchcrf/__init__.py\u001b[0m in \u001b[0;36m_validate\u001b[0;34m(self, emissions, tags, mask)\u001b[0m\n\u001b[1;32m 147\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'emissions must have dimension of 3, got {emissions.dim()}'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0memissions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_tags\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 149\u001b[0;31m raise ValueError(\n\u001b[0m\u001b[1;32m 150\u001b[0m \u001b[0;34mf'expected last dimension of emissions is {self.num_tags}, '\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 151\u001b[0m f'got {emissions.size(2)}')\n",
"\u001b[0;31mValueError\u001b[0m: expected last dimension of emissions is 10, got 9"
]
}
],
2021-06-22 19:27:08 +02:00
"source": [
"for i in range(2):\n",
" crf.train()\n",
" model.train()\n",
" for i in tqdm(range(len(labels_tokens))):\n",
" batch_tokens = train_tokens[i].unsqueeze(0)\n",
" tags = labels_tokens[i].unsqueeze(1)\n",
"\n",
" predicted_tags = model(batch_tokens).squeeze(0).unsqueeze(1)\n",
"\n",
" optimizer.zero_grad()\n",
" loss = -crf(predicted_tags, tags)\n",
"\n",
" loss.backward()\n",
" optimizer.step()"
]
},
{
"cell_type": "code",
"execution_count": null,
2021-06-24 19:07:58 +02:00
"id": "366ab1fe",
2021-06-22 19:27:08 +02:00
"metadata": {},
"outputs": [],
"source": [
2021-06-24 19:07:58 +02:00
"Y_pred = []\n",
"model.eval()\n",
"crf.eval()\n",
"for i in tqdm(range(len(test_tokens))):\n",
" batch_tokens = test_tokens[i].unsqueeze(0)\n",
"\n",
" Y_batch_pred = model(batch_tokens).squeeze(0).unsqueeze(1)\n",
" Y_pred += [crf.decode(Y_batch_pred)[0]]\n",
"\n",
"Y_pred_translate = translate(Y_pred, vocab)\n",
"return Y_pred_translate"
2021-06-22 19:27:08 +02:00
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}