Compare commits
1 Commits
Author | SHA1 | Date | |
---|---|---|---|
8308c8067e |
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,2 +1,3 @@
|
||||
*~
|
||||
*.pyc
|
||||
.idea
|
||||
|
215
dev-0/out.tsv
Normal file
215
dev-0/out.tsv
Normal file
File diff suppressed because one or more lines are too long
153
t.py
Normal file
153
t.py
Normal file
@ -0,0 +1,153 @@
|
||||
from collections import Counter
|
||||
|
||||
import pandas as pd
|
||||
import torch
|
||||
from torchtext.vocab import Vocab
|
||||
|
||||
|
||||
class NERModel(torch.nn.Module):
|
||||
def __init__(self, ):
|
||||
super(NERModel, self).__init__()
|
||||
self.emb = torch.nn.Embedding(23628, 200)
|
||||
self.fc1 = torch.nn.Linear(600, 9)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.emb(x)
|
||||
x = x.reshape(600)
|
||||
x = self.fc1(x)
|
||||
return x
|
||||
|
||||
|
||||
def data_process(dt):
|
||||
return [torch.tensor([vocab['<bos>']] + [vocab[token] for token in document] + [vocab['<eos>']], dtype=torch.long)
|
||||
for document in dt]
|
||||
|
||||
|
||||
def build_vocab(dataset):
|
||||
counter = Counter()
|
||||
for document in dataset:
|
||||
counter.update(document)
|
||||
return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
|
||||
|
||||
|
||||
def labels_process(dt):
|
||||
return [torch.tensor([0] + document + [0], dtype=torch.long) for document in dt]
|
||||
|
||||
|
||||
def predict(input_tokens, labels):
|
||||
results = []
|
||||
for i in range(len(input_tokens)):
|
||||
line_results = []
|
||||
for j in range(1, len(input_tokens[i]) - 1):
|
||||
x = input_tokens[i][j - 1: j + 2].to(device)
|
||||
predicted = ner_model(x.long())
|
||||
result = torch.argmax(predicted)
|
||||
label = labels[result]
|
||||
line_results.append(label)
|
||||
results.append(line_results)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def features(data):
|
||||
featurez = []
|
||||
for sentence in data["tokens"]:
|
||||
t_sentence = torch.tensor(())
|
||||
for word in sentence:
|
||||
temp = torch.tensor([word[0].isupper(), len(word)])
|
||||
t_sentence = torch.cat((t_sentence, temp))
|
||||
featurez.append(t_sentence)
|
||||
|
||||
return featurez
|
||||
|
||||
|
||||
def merge_features(token_ids, tensors_list):
|
||||
return [torch.cat((token, tensors_list[i])) for i, token in enumerate(token_ids)]
|
||||
|
||||
|
||||
def process_output(lines):
|
||||
result = []
|
||||
for line in lines:
|
||||
last_label = None
|
||||
new_line = []
|
||||
for label in line:
|
||||
if label != "O" and label[0:2] == "I-":
|
||||
if last_label is None or last_label == "O":
|
||||
label = label.replace('I-', 'B-')
|
||||
else:
|
||||
label = "I-" + last_label[2:]
|
||||
last_label = label
|
||||
new_line.append(label)
|
||||
result.append(" ".join(new_line))
|
||||
return result
|
||||
|
||||
|
||||
def infer(path_in, path_out, labels):
|
||||
df = pd.read_csv(path_in, sep='\t', names=['tokens'])
|
||||
df_token_ids = data_process(df["tokens"].apply(lambda x: x.split()))
|
||||
df_infer = merge_features(df_token_ids, features(df))
|
||||
infers = predict(df_infer, labels)
|
||||
infers_processed = process_output(infers)
|
||||
with open(path_out, "w") as file_out:
|
||||
for inf in infers_processed:
|
||||
file_out.write(inf + "\n")
|
||||
|
||||
|
||||
labels = ['O', 'B-LOC', 'I-LOC', 'B-MISC', 'I-MISC', 'B-ORG', 'I-ORG', 'B-PER', 'I-PER']
|
||||
|
||||
df = pd.read_csv('train/train.tsv.xz', compression='xz', sep='\t', names=['iob', 'tokens'])
|
||||
df["iob"] = df["iob"].apply(lambda x: [labels.index(y) for y in x.split()])
|
||||
df["tokens"] = df["tokens"].apply(lambda x: x.split())
|
||||
|
||||
|
||||
vocab = build_vocab(df['tokens'])
|
||||
|
||||
device = torch.device("cuda:0")
|
||||
ner_model = NERModel().to(device)
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(ner_model.parameters())
|
||||
|
||||
train_labels = labels_process(df['iob'])
|
||||
train_tokens_ids = data_process(df['tokens'])
|
||||
df_features = features(df)
|
||||
train_tensors = merge_features(train_tokens_ids, df_features)
|
||||
|
||||
for epoch in range(5):
|
||||
acc_score = 0
|
||||
prec_score = 0
|
||||
selected_items = 0
|
||||
recall_score = 0
|
||||
relevant_items = 0
|
||||
items_total = 0
|
||||
ner_model.train()
|
||||
for i in range(len(train_labels)):
|
||||
for j in range(1, len(train_labels[i]) - 1):
|
||||
X = train_tensors[i][j - 1: j + 2].to(device)
|
||||
Y = train_labels[i][j: j + 1].to(device)
|
||||
Y_predictions = ner_model(X.long())
|
||||
|
||||
acc_score += int(torch.argmax(Y_predictions) == Y)
|
||||
if torch.argmax(Y_predictions) != 0:
|
||||
selected_items += 1
|
||||
if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():
|
||||
prec_score += 1
|
||||
if Y.item() != 0:
|
||||
relevant_items += 1
|
||||
if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():
|
||||
recall_score += 1
|
||||
|
||||
items_total += 1
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(Y_predictions.unsqueeze(0), Y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
precision = prec_score / selected_items
|
||||
recall = recall_score / relevant_items
|
||||
f1_score = (2 * precision * recall) / (precision + recall)
|
||||
print(f'epoch: {epoch}')
|
||||
print(f'f1: {f1_score}')
|
||||
print(f'acc: {acc_score / items_total}')
|
||||
|
||||
infer('dev-0/in.tsv', 'dev-0/out.tsv', labels=labels)
|
||||
infer('test-A/in.tsv', 'test-A/out.tsv', labels=labels)
|
230
test-A/out.tsv
Normal file
230
test-A/out.tsv
Normal file
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user