{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import os.path\n", "import gzip\n", "import shutil\n", "import torch" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "if not os.path.isfile('train/train.tsv'):\n", " import lzma\n", " with lzma.open('train/train.tsv.xz', 'rb') as f_in:\n", " with open('train/train.tsv', 'wb') as f_out:\n", " shutil.copyfileobj(f_in, f_out)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "raw_data = pd.read_csv('train/train.tsv', sep='\\t', names=['labels', 'text'])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
LabelWordWordLenWordHasDigitCapitalFirst
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [Label, Word, WordLen, WordHasDigit, CapitalFirst]\n", "Index: []" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = []\n", "for sentence in raw_data.to_numpy():\n", " for label, word in zip(sentence[0].split(), sentence[1].split()):\n", " data.append([label,word,len(word), any(c.isdigit() for c in word), word.isupper()])\n", "df = pd.DataFrame(data, columns=['Label', 'Word', 'WordLen', 'WordHasDigit', 'CapitalFirst'], index=None)\n", "df[df[\"Label\"]==None]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def labels_process(dt):\n", " return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n", "\n", "def data_process(dt):\n", " return [ torch.tensor([vocab['']] +[vocab[token] for token in document ] + [vocab['']], dtype = torch.long) for document in dt]" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }