import pandas as pd import numpy as np import gensim import torch import pandas as pd import seaborn as sns from sklearn.model_selection import train_test_split # Load data train = pd.read_csv('train/train.tsv', sep='\t', names=['labels', 'document']) Y_train = train['labels'].values X_train = train['document'].values test = pd.read_csv('test-A/in.tsv', sep='\t', names=['document']) X_test = test['document'].values dev = pd.read_csv('dev-0/in.tsv', sep='\t', names=['document']) exp = pd.read_csv('dev-0/expected.tsv', sep='\t', names=['labels']) X_dev = dev['document'].values Y_dev = dev['labels'].values