189 lines
5.6 KiB
Python
189 lines
5.6 KiB
Python
import pandas as pd
|
|
import numpy as np
|
|
import csv
|
|
import os.path
|
|
import shutil
|
|
import torch
|
|
from tqdm import tqdm
|
|
from itertools import islice
|
|
from sklearn.model_selection import train_test_split
|
|
from torchtext.vocab import Vocab
|
|
from collections import Counter
|
|
from nltk.tokenize import word_tokenize
|
|
import gensim.downloader as api
|
|
from gensim.models.word2vec import Word2Vec
|
|
|
|
class NERModel(torch.nn.Module):
|
|
|
|
def __init__(self,):
|
|
super(NERModel, self).__init__()
|
|
self.emb = torch.nn.Embedding(23628,200)
|
|
self.fc1 = torch.nn.Linear(600,9)
|
|
|
|
|
|
def forward(self, x):
|
|
x = self.emb(x)
|
|
x = x.reshape(600)
|
|
x = self.fc1(x)
|
|
return x
|
|
|
|
def process_output(lines):
|
|
result = []
|
|
for line in lines:
|
|
last_label = None
|
|
new_line = []
|
|
for label in line:
|
|
if(label != "O" and label[0:2] == "I-"):
|
|
if last_label == None or last_label == "O":
|
|
label = label.replace('I-', 'B-')
|
|
else:
|
|
label = "I-" + last_label[2:]
|
|
last_label = label
|
|
new_line.append(label)
|
|
x = (" ".join(new_line))
|
|
result.append(" ".join(new_line))
|
|
return result
|
|
|
|
def build_vocab(dataset):
|
|
counter = Counter()
|
|
for document in dataset:
|
|
counter.update(document)
|
|
return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
|
|
|
|
def data_process(dt):
|
|
return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]
|
|
|
|
def labels_process(dt):
|
|
return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]
|
|
|
|
def predict(input_tokens, labels):
|
|
|
|
results = []
|
|
|
|
for i in range(len(input_tokens)):
|
|
line_results = []
|
|
for j in range(1, len(input_tokens[i]) - 1):
|
|
x = input_tokens[i][j-1: j+2].to(device_gpu)
|
|
predicted = ner_model(x.long())
|
|
result = torch.argmax(predicted)
|
|
label = labels[result]
|
|
line_results.append(label)
|
|
results.append(line_results)
|
|
|
|
return results
|
|
|
|
train = pd.read_csv('train/train.tsv.xz', sep='\t', names=['a', 'b'])
|
|
|
|
labels = ['O','B-LOC', 'I-LOC','B-MISC', 'I-MISC', 'B-ORG', 'I-ORG', 'B-PER', 'I-PER']
|
|
train["a"]=train["a"].apply(lambda x: [labels.index(y) for y in x.split()])
|
|
train["b"]=train["b"].apply(lambda x: x.split())
|
|
|
|
vocab = build_vocab(train['b'])
|
|
|
|
tensors = []
|
|
|
|
for sent in train["b"]:
|
|
sent_tensor = torch.tensor(())
|
|
for word in sent:
|
|
temp = torch.tensor([word[0].isupper(), word[0].isdigit()])
|
|
sent_tensor = torch.cat((sent_tensor, temp))
|
|
|
|
tensors.append(sent_tensor)
|
|
|
|
device_gpu = torch.device("cuda:0")
|
|
ner_model = NERModel().to(device_gpu)
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
optimizer = torch.optim.Adam(ner_model.parameters())
|
|
|
|
train_labels = labels_process(train['a'])
|
|
train_tokens_ids = data_process(train['b'])
|
|
|
|
train_tensors = [torch.cat((token, tensors[i])) for i, token in enumerate(train_tokens_ids)]
|
|
|
|
for epoch in range(5):
|
|
acc_score = 0
|
|
prec_score = 0
|
|
selected_items = 0
|
|
recall_score = 0
|
|
relevant_items = 0
|
|
items_total = 0
|
|
ner_model.train()
|
|
for i in range(len(train_labels)):
|
|
for j in range(1, len(train_labels[i]) - 1):
|
|
X = train_tensors[i][j - 1: j + 2].to(device_gpu)
|
|
|
|
Y = train_labels[i][j: j + 1].to(device_gpu)
|
|
|
|
Y_predictions = ner_model(X.long())
|
|
|
|
acc_score += int(torch.argmax(Y_predictions) == Y)
|
|
if torch.argmax(Y_predictions) != 0:
|
|
selected_items += 1
|
|
if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():
|
|
prec_score += 1
|
|
if Y.item() != 0:
|
|
relevant_items += 1
|
|
if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():
|
|
recall_score += 1
|
|
|
|
items_total += 1
|
|
optimizer.zero_grad()
|
|
loss = criterion(Y_predictions.unsqueeze(0), Y)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
precision = prec_score / selected_items
|
|
recall = recall_score / relevant_items
|
|
f1_score = (2 * precision * recall) / (precision + recall)
|
|
print(f'epoch: {epoch}')
|
|
print(f'f1: {f1_score}')
|
|
print(f'acc: {acc_score / items_total}')
|
|
|
|
def create_tensors_list(data):
|
|
tensors = []
|
|
|
|
for sent in data["a"]:
|
|
sent_tensor = torch.tensor(())
|
|
for word in sent:
|
|
temp = torch.tensor([word[0].isupper(), word[0].isdigit()])
|
|
sent_tensor = torch.cat((sent_tensor, temp))
|
|
|
|
tensors.append(sent_tensor)
|
|
|
|
return tensors
|
|
|
|
dev = pd.read_csv('dev-0/in.tsv', sep='\t', names=['a'])
|
|
dev["a"] = dev["a"].apply(lambda x: x.split())
|
|
|
|
dev_tokens_ids = data_process(dev["a"])
|
|
|
|
dev_extra_tensors = create_tensors_list(dev)
|
|
|
|
dev_tensors = [torch.cat((token, dev_extra_tensors[i])) for i, token in enumerate(dev_tokens_ids)]
|
|
|
|
results = predict(dev_tensors, labels)
|
|
results_processed = process_output(results)
|
|
|
|
with open("dev-0/out.tsv", "w") as f:
|
|
for line in results_processed:
|
|
f.write(line + "\n")
|
|
|
|
test = pd.read_csv('test-A/in.tsv', sep='\t', names=['a'])
|
|
test["a"] = test["a"].apply(lambda x: x.split())
|
|
|
|
test_tokens_ids = data_process(test["a"])
|
|
|
|
test_extra_tensors = create_tensors_list(test)
|
|
|
|
test_tensors = [torch.cat((token, test_extra_tensors[i])) for i, token in enumerate(test_tokens_ids)]
|
|
|
|
results = predict(test_tensors, labels)
|
|
results_processed = process_output(results)
|
|
|
|
with open("test-A/out.tsv", "w") as f:
|
|
for line in results_processed:
|
|
f.write(line + "\n")
|
|
|
|
model_path = "seq_labeling.model"
|
|
torch.save(ner_model.state_dict(), model_path)
|
|
|