hf_roberta_base_classification
This commit is contained in:
parent
9ec36ba822
commit
c51a389af7
298268
dev-0/out.tsv
298268
dev-0/out.tsv
File diff suppressed because it is too large
Load Diff
60
hf_roberta_base_classification/01_create_datasets.py
Normal file
60
hf_roberta_base_classification/01_create_datasets.py
Normal file
@ -0,0 +1,60 @@
|
||||
import datetime
|
||||
import calendar
|
||||
|
||||
def to_fractional_year(d: datetime.datetime) -> float:
|
||||
"""
|
||||
Converts a date stamp to a fractional year (i.e. number like `1939.781`)
|
||||
"""
|
||||
is_leap = calendar.isleap(d.year)
|
||||
t = d.timetuple()
|
||||
day_of_year = t.tm_yday
|
||||
day_time = (60 * 60 * t.tm_hour + 60 * t.tm_min + t.tm_sec) / (24 * 60 * 60)
|
||||
|
||||
days_in_year = 366 if is_leap else 365
|
||||
|
||||
return d.year + ((day_of_year - 1 + day_time) / days_in_year)
|
||||
|
||||
def fractional_to_date(fractional):
|
||||
eps = 0.0001
|
||||
year = int(fractional)
|
||||
is_leap = calendar.isleap(year)
|
||||
|
||||
modulus = fractional % 1
|
||||
|
||||
days_in_year = 366 if is_leap else 365
|
||||
|
||||
day_of_year = int( days_in_year * modulus + eps )
|
||||
|
||||
d = datetime.datetime(year, 1,1) + datetime.timedelta(days = day_of_year )
|
||||
|
||||
return d
|
||||
|
||||
dates = (datetime.datetime(1825,10,30),
|
||||
datetime.datetime(1825,10,31),
|
||||
datetime.datetime(1900,1,1),
|
||||
datetime.datetime(1900,12,1),
|
||||
datetime.datetime(1900,12,31),
|
||||
datetime.datetime(1930,2,28),
|
||||
datetime.datetime(1932,2,29),
|
||||
)
|
||||
|
||||
for split in 'train', 'dev-0':
|
||||
with open(f'../{split}/in.tsv') as f_in, open(f'../{split}/expected.tsv') as f_exp, open(f'./{split}_huggingface_format.csv', 'w') as f_hf:
|
||||
f_hf.write('year_cont\tyear\tmonth\tday\tweekday\tday_of_year\ttext\n')
|
||||
for line_in,line_exp in zip(f_in,f_exp):
|
||||
year_cont = float(line_exp.rstrip())
|
||||
date = fractional_to_date(year_cont)
|
||||
year = date.year
|
||||
month = date.month
|
||||
day = date.day
|
||||
weekday = date.weekday()
|
||||
day_of_year = date.timetuple().tm_yday
|
||||
|
||||
#f_hf.write(line_exp.rstrip() + '\t' + line_in)
|
||||
f_hf.write(f'{year_cont}\t{year}\t{month}\t{day}\t{weekday}\t{day_of_year}\t{line_in}')
|
||||
|
||||
for split in ('test-A',):
|
||||
with open(f'../{split}/in.tsv') as f_in, open(f'./{split}_huggingface_format.csv', 'w') as f_hf:
|
||||
f_hf.write('year_cont\tyear\tmonth\tday\tweekday\tday_of_year\ttext\n')
|
||||
for line_in in f_in:
|
||||
f_hf.write(f'0\t0\t0\t0\t0\t0\t{line_in}')
|
75
hf_roberta_base_classification/02_load_dataset.py
Normal file
75
hf_roberta_base_classification/02_load_dataset.py
Normal file
@ -0,0 +1,75 @@
|
||||
from config import MODEL, TEST
|
||||
import pickle
|
||||
from datasets import load_dataset, Dataset
|
||||
from transformers import AutoTokenizer
|
||||
from tqdm import tqdm
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
import numpy as np
|
||||
from config import *
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
||||
def tokenize_function(examples):
|
||||
t = tokenizer(examples["text"], padding="max_length", truncation=True, max_length=40)
|
||||
return t
|
||||
|
||||
def get_dataset_dict(dataset):
|
||||
with open(dataset) as f_in:
|
||||
next(f_in)
|
||||
d = dict()
|
||||
d['year_cont'] = list()
|
||||
d['year'] = list()
|
||||
d['month'] = list()
|
||||
d['day'] = list()
|
||||
d['weekday'] = list()
|
||||
d['day_of_year'] = list()
|
||||
d['text'] = list()
|
||||
for l in f_in:
|
||||
yc,y,m,day,w,dy,t= l.rstrip().split('\t')
|
||||
d['year_cont'].append(yc)
|
||||
d['year'].append(int(y) - MIN_YEAR)
|
||||
d['month'].append(int(m))
|
||||
d['day'].append(int(day))
|
||||
d['weekday'].append(int(w))
|
||||
d['day_of_year'].append(int(dy))
|
||||
d['text'].append(t)
|
||||
return d
|
||||
|
||||
train_dataset = Dataset.from_dict(get_dataset_dict('train_huggingface_format.csv')).map(tokenize_function, batched=True).shuffle(seed=42)
|
||||
eval_dataset_full = Dataset.from_dict(get_dataset_dict('dev-0_huggingface_format.csv')).map(tokenize_function, batched=True)
|
||||
eval_dataset_small = eval_dataset_full.shuffle(seed=42).select(range(2000))
|
||||
test_dataset_A = Dataset.from_dict(get_dataset_dict('test-A_huggingface_format.csv')).map(tokenize_function, batched=True)
|
||||
|
||||
if TEST:
|
||||
train_dataset = train_dataset.select(range(25))
|
||||
eval_dataset_full = eval_dataset_full.select(range(400))
|
||||
eval_dataset_small = eval_dataset_small.select(range(50))
|
||||
test_dataset_A = test_dataset_A.select(range(200))
|
||||
|
||||
scalers = dict()
|
||||
scalers['year'] = MinMaxScaler().fit(np.array(train_dataset['year']).reshape(-1,1))
|
||||
|
||||
def add_scaled(example):
|
||||
for factor in ('year',):
|
||||
example[factor + '_scaled'] = scalers[factor].transform(np.array(example[factor]).reshape(-1,1)).reshape(1,-1)[0].item()
|
||||
return example
|
||||
|
||||
train_dataset = train_dataset.map(add_scaled)
|
||||
eval_dataset_full = eval_dataset_full.map(add_scaled)
|
||||
eval_dataset_small = eval_dataset_small.map(add_scaled)
|
||||
test_dataset_A = test_dataset_A.map(add_scaled)
|
||||
|
||||
|
||||
with open('train_dataset.pickle','wb') as f_p:
|
||||
pickle.dump(train_dataset, f_p)
|
||||
|
||||
with open('eval_dataset_small.pickle','wb') as f_p:
|
||||
pickle.dump(eval_dataset_small, f_p)
|
||||
|
||||
with open('eval_dataset_full.pickle','wb') as f_p:
|
||||
pickle.dump(eval_dataset_full, f_p)
|
||||
|
||||
with open('test_dataset_A.pickle','wb') as f_p:
|
||||
pickle.dump(test_dataset_A, f_p)
|
||||
|
||||
with open('scalers.pickle','wb') as f_p:
|
||||
pickle.dump(scalers, f_p)
|
151
hf_roberta_base_classification/03_train_pytorch_regression.py
Normal file
151
hf_roberta_base_classification/03_train_pytorch_regression.py
Normal file
@ -0,0 +1,151 @@
|
||||
from config import *
|
||||
import pickle
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoTokenizer, RobertaModel, RobertaTokenizer
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import AutoModelForSequenceClassification
|
||||
from torch.optim import Adam
|
||||
from transformers import get_scheduler
|
||||
import torch
|
||||
from tqdm.auto import tqdm
|
||||
import os
|
||||
import pickle
|
||||
from regressor_head import RegressorHead
|
||||
from classification_head import YearClassificationHead
|
||||
|
||||
try:
|
||||
os.mkdir('roberta_year_prediction')
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
def pickle_model_save(name):
|
||||
with open(f'roberta_year_prediction/{name}', 'wb') as f:
|
||||
pickle.dump(model,f)
|
||||
|
||||
if TEST:
|
||||
STEPS_EVAL = 10
|
||||
WARMUP_STEPS = 10
|
||||
|
||||
|
||||
with open('train_dataset.pickle','rb') as f_p:
|
||||
train_dataset = pickle.load(f_p)
|
||||
|
||||
with open('eval_dataset_small.pickle','rb') as f_p:
|
||||
eval_dataset_small = pickle.load(f_p)
|
||||
|
||||
with open('eval_dataset_full.pickle','rb') as f_p:
|
||||
eval_dataset_full = pickle.load(f_p)
|
||||
|
||||
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=BATCH_SIZE)
|
||||
eval_dataloader_small = DataLoader(eval_dataset_small, batch_size=BATCH_SIZE)
|
||||
eval_dataloader_full = DataLoader(eval_dataset_full, batch_size=BATCH_SIZE)
|
||||
|
||||
|
||||
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||
model = RobertaModel.from_pretrained('roberta-base')
|
||||
#model = RobertaModel(model.config)
|
||||
model.regressor_head = YearClassificationHead(768, MIN_YEAR, MAX_YEAR).to('cuda')
|
||||
model.to(device)
|
||||
|
||||
optimizer = Adam(model.parameters(), lr=LR)
|
||||
|
||||
num_training_steps = NUM_EPOCHS * len(train_dataloader)
|
||||
#lr_scheduler = get_scheduler(
|
||||
# "linear",
|
||||
# optimizer=optimizer,
|
||||
# num_warmup_steps=WARMUP_STEPS,
|
||||
# num_training_steps=num_training_steps
|
||||
#)
|
||||
|
||||
|
||||
progress_bar = tqdm(range(num_training_steps))
|
||||
model.train()
|
||||
|
||||
model.train()
|
||||
model.to(device)
|
||||
|
||||
def transform_batch(batch):
|
||||
batch['input_ids'] = torch.stack(batch['input_ids']).permute(1,0).to(device)
|
||||
batch['attention_mask'] = torch.stack(batch['attention_mask']).permute(1,0).to(device)
|
||||
labels = batch['year'].to(device)
|
||||
|
||||
batch['input_ids'].to(device)
|
||||
batch['attention_mask'].to(device)
|
||||
|
||||
for c in set(batch.keys()) - {'input_ids', 'attention_mask'}:
|
||||
del batch[c]
|
||||
|
||||
return batch, labels
|
||||
|
||||
|
||||
def eval(full = False):
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
eval_loss = 0.0
|
||||
dataloader = eval_dataloader_full if full else eval_dataloader_small
|
||||
items_passed = 0
|
||||
for i, batch in enumerate(dataloader):
|
||||
items_passed += len(batch)
|
||||
|
||||
batch, labels = transform_batch(batch)
|
||||
outputs = model(**batch)[0]
|
||||
outputs = model.regressor_head(outputs)
|
||||
|
||||
loss = criterion(outputs.squeeze(), labels)
|
||||
eval_loss += loss.item()
|
||||
eval_loss = (eval_loss / items_passed)
|
||||
print(f'eval loss full={full}: {eval_loss:.5f}', end = '\n')
|
||||
model.train()
|
||||
return eval_loss
|
||||
|
||||
#criterion = torch.nn.MSELoss(reduction='sum').to(device)
|
||||
criterion = torch.nn.CrossEntropyLoss(reduction='sum').to(device)
|
||||
|
||||
|
||||
best_eval_loss = 9999
|
||||
epochs_without_progress = 0
|
||||
for epoch in range(NUM_EPOCHS):
|
||||
train_loss = 0.0
|
||||
items_passed = 0
|
||||
for i, batch in enumerate(train_dataloader):
|
||||
items_passed += len(batch)
|
||||
|
||||
batch, labels = transform_batch(batch)
|
||||
outputs = model(**batch)[0]
|
||||
outputs = model.regressor_head(outputs)
|
||||
|
||||
loss = criterion(outputs.squeeze(), labels)
|
||||
loss.backward()
|
||||
train_loss += loss.item()
|
||||
progress_bar.update(1)
|
||||
|
||||
optimizer.step()
|
||||
#lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
model.zero_grad()
|
||||
|
||||
if i % STEPS_EVAL == 0 and i > 1 :
|
||||
print(f' epoch {epoch} train loss: {(train_loss / items_passed):.5f}', end = '\t')
|
||||
items_passed = 0
|
||||
train_loss = 0.0
|
||||
eval(full = False)
|
||||
|
||||
eval_loss = eval(full=True)
|
||||
|
||||
|
||||
pickle_model_save(f'epoch_{epoch}')
|
||||
pickle_model_save(f'epoch_last')
|
||||
|
||||
if eval_loss < best_eval_loss:
|
||||
pickle_model_save(f'epoch_best')
|
||||
print('\nsaving best model')
|
||||
best_eval_loss = eval_loss
|
||||
else:
|
||||
epochs_without_progress += 1
|
||||
print(f'epochs_witohut_progress: {epochs_without_progress}')
|
||||
|
||||
if epochs_without_progress > EARLY_STOPPING:
|
||||
print('early stopping')
|
||||
break
|
||||
|
||||
print(f'best_eval_loss: {best_eval_loss:5f}', end = '\n')
|
70
hf_roberta_base_classification/04_predict.py
Normal file
70
hf_roberta_base_classification/04_predict.py
Normal file
@ -0,0 +1,70 @@
|
||||
import pickle
|
||||
import torch
|
||||
from transformers import AutoTokenizer, RobertaModel, RobertaTokenizer
|
||||
from regressor_head import RegressorHead
|
||||
from classification_head import YearClassificationHead
|
||||
from torch.utils.data import DataLoader
|
||||
from tqdm.auto import tqdm
|
||||
from config import *
|
||||
|
||||
with open('eval_dataset_full.pickle','rb') as f_p:
|
||||
eval_dataset_full = pickle.load(f_p)
|
||||
|
||||
with open('test_dataset_A.pickle','rb') as f_p:
|
||||
test_dataset = pickle.load(f_p)
|
||||
|
||||
device = 'cuda'
|
||||
with open('./roberta_year_prediction/epoch_best', 'rb') as f:
|
||||
model = pickle.load(f)
|
||||
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
lrelu = torch.nn.LeakyReLU(0.0)
|
||||
def hard_clip(t):
|
||||
t = lrelu(t)
|
||||
t = -lrelu(-t + 1 ) + 1
|
||||
return t
|
||||
|
||||
with open('scalers.pickle', 'rb') as f_scaler:
|
||||
scalers = pickle.load(f_scaler)
|
||||
|
||||
|
||||
def transform_batch(batch):
|
||||
batch['input_ids'] = torch.stack(batch['input_ids']).permute(1,0).to(device)
|
||||
batch['attention_mask'] = torch.stack(batch['attention_mask']).permute(1,0).to(device)
|
||||
labels = batch['year'].to(device)
|
||||
|
||||
batch['input_ids'].to(device)
|
||||
batch['attention_mask'].to(device)
|
||||
|
||||
for c in set(batch.keys()) - {'input_ids', 'attention_mask'}:
|
||||
del batch[c]
|
||||
|
||||
return batch, labels
|
||||
|
||||
|
||||
def predict(dataset, out_f):
|
||||
eval_dataloader = DataLoader(dataset, batch_size=20)
|
||||
outputs = []
|
||||
|
||||
progress_bar = tqdm(range(len(eval_dataloader)))
|
||||
|
||||
for batch in eval_dataloader:
|
||||
batch, labels = transform_batch(batch)
|
||||
|
||||
o = model(**batch)[0]
|
||||
o = model.regressor_head(o)
|
||||
o = torch.argmax(o,1)
|
||||
|
||||
outputs.extend(o.tolist())
|
||||
progress_bar.update(1)
|
||||
outputs = [a + MIN_YEAR for a in outputs]
|
||||
|
||||
with open(out_f,'w') as f_out:
|
||||
|
||||
for o in outputs:
|
||||
f_out.write(str(o) + '\n')
|
||||
|
||||
predict(eval_dataset_full, '../dev-0/out.tsv')
|
||||
predict(test_dataset, '../test-A/out.tsv')
|
11
hf_roberta_base_classification/config.py
Normal file
11
hf_roberta_base_classification/config.py
Normal file
@ -0,0 +1,11 @@
|
||||
#MODEL = '../MODELS/without_date/checkpoint-395000'
|
||||
MODEL = 'roberta-base'
|
||||
BATCH_SIZE = 90
|
||||
EARLY_STOPPING = 3
|
||||
WARMUP_STEPS = 5_000
|
||||
LR=1e-5
|
||||
NUM_EPOCHS = 20
|
||||
STEPS_EVAL = 500
|
||||
TEST=False
|
||||
MIN_YEAR=1996
|
||||
MAX_YEAR=2019
|
296616
test-A/out.tsv
296616
test-A/out.tsv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user