ireland-news-headlines/roberta_year_as_text_better_finetunning/04_predict.py

86 lines
2.6 KiB
Python
Raw Normal View History

import pickle
from config import LABELS_LIST, MODEL
with open('train_dataset.pickle','rb') as f_p:
train_dataset = pickle.load(f_p)
with open('eval_dataset_small.pickle','rb') as f_p:
eval_dataset_small = pickle.load(f_p)
with open('eval_dataset_full.pickle','rb') as f_p:
eval_dataset_full = pickle.load(f_p)
with open('test_dataset.pickle','rb') as f_p:
test_dataset = pickle.load(f_p)
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained('roberta-ireland').cuda()
from transformers import TrainingArguments
training_args = TrainingArguments("roberta-ireland",
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
evaluation_strategy='steps',
#eval_steps=2_000,
#save_steps=2_000,
eval_steps=2_000,
save_steps=20_000,
num_train_epochs=1,
gradient_accumulation_steps=2,
learning_rate = 1e-6,
#warmup_steps=4_000,
warmup_steps=4,
load_best_model_at_end=True,
)
import numpy as np
from datasets import load_metric
metric = load_metric("accuracy")
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
from transformers import Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset_small,
compute_metrics=compute_metrics,
)
eval_predictions = trainer.predict(eval_dataset_full).predictions.argmax(1)
with open('../dev-0/out.tsv', 'w') as f_out:
for pred in eval_predictions:
f_out.write(LABELS_LIST[pred] + '\n')
test_predictions = trainer.predict(test_dataset).predictions.argmax(1)
with open('../test-A/out.tsv', 'w') as f_out:
for pred in test_predictions:
f_out.write(LABELS_LIST[pred] + '\n')
#model = AutoModelForSequenceClassification.from_pretrained('roberta-retrained/')
#for dataset in ('dev-0', 'test-A'):
# with open(f'../{dataset}/in.tsv') as f_in, open(f'../{dataset}/out.tsv','w') as f_out:
# for line_in in tqdm(f_in, total=150_000):
# _,_, text = line_in.split('\t')
# text = text.rstrip('\n')
# inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt").to(device)
# outputs = model(**inputs)
# probs = outputs[0].softmax(1)
# prediction = LABELS_LIST[probs.argmax(1)]
# f_out.write(prediction + '\n')
#